Tracking Performance of Semi-Supervised Large Margin Classifiers in Automatic Modulation Classification

نویسندگان

  • Hamidreza Hosseinzadeh
  • Farbod Razzazi
  • Afrooz Haghbin
چکیده

Automatic modulation classification (AMC) in detected signals is an intermediate step between signal detection and demodulation, and is also an essential task for an intelligent receiver in various civil and military applications. In this paper, we propose a semi-supervised Large margin AMC and evaluate it on tracking the received signal to noise ratio (SNR) changes to classify most popular single carrier modulations in non-stationary environments. To achieve this objective, two structures for self-training of large margin classifiers were developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A suitable combination of the higher order statistics (HOS) and instantaneous characteristics of digital modulation are selected as effective features. We investigated the robustness of the proposed classifiers with respect to different SNRs of the received signals via simulation results and we have shown that adding unlabeled input samples to the training set, improve the tracking capacity of the presented system to robust against environmental SNR changes. The performance of the automatic modulation classifier is presented in the form of k-fold cross-validation test, classification accuracy and confusion matrix methods. Simulation results show that the proposed approach is capable to classify the modulation class in unknown variable noise environment at even low SNRs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Efficient large margin semisupervised learning

In classification, semisupervised learning involves a large amount of unlabeled data with only a small number of labeled data. This imposes great challenge in that the class probability given input can not be well estimated through labeled data alone. To enhance predictability of classification, this article introduces a large margin semisupervised learning method constructing an efficient loss...

متن کامل

Minimum Density Hyperplanes

Associating distinct groups of objects (clusters) with contiguous regions of high probability density (high-density clusters), is a central assumption in statistical and machine learning approaches for the classification of unlabelled data. In unsupervised classification this cluster definition underlies a nonparametric approach known as density clustering. In semi-supervised classification, cl...

متن کامل

Online Large Margin Semi-supervised Algorithm for Automatic Classification of Digital Modulations

Automatic classification of modulation type in detected signals is an intermediate step between signal detection and demodulation, and is also an essential task for an intelligent receiver in various civil and military applications. In this paper, we propose a semi-supervised online passive-aggressive classifier that uses self-training approach for AWGN channels with unknown or variable signal ...

متن کامل

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014