A Comprehensive Analysis of Transcript-Supported De Novo Genes in Saccharomyces sensu stricto Yeasts

نویسندگان

  • Tzu-Chiao Lu
  • Jun-Yi Leu
  • Wen-Chang Lin
چکیده

Novel genes arising from random DNA sequences (de novo genes) have been suggested to be widespread in the genomes of different organisms. However, our knowledge about the origin and evolution of de novo genes is still limited. To systematically understand the general features of de novo genes, we established a robust pipeline to analyze >20,000 transcript-supported coding sequences (CDSs) from the budding yeast Saccharomyces cerevisiae. Our analysis pipeline combined phylogeny, synteny, and sequence alignment information to identify possible orthologs across 20 Saccharomycetaceae yeasts and discovered 4,340 S. cerevisiae-specific de novo genes and 8,871 S. sensu stricto-specific de novo genes. We further combine information on CDS positions and transcript structures to show that >65% of de novo genes arose from transcript isoforms of ancient genes, especially in the upstream and internal regions of ancient genes. Fourteen identified de novo genes with high transcript levels were chosen to verify their protein expressions. Ten of them, including eight transcript isoform-associated CDSs, showed translation signals and five proteins exhibited specific cytosolic localizations. Our results suggest that de novo genes frequently arise in the S. sensu stricto complex and have the potential to be quickly integrated into ancient cellular network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species.

Fluorescent amplified fragment length polymorphism analysis demonstrates a high level of gene exchange between Saccharomyces sensu stricto species, with some strains having undergone multiple interspecific hybridization events with subsequent changes in genome complexity. Two lager strains were shown to be hybrids between Saccharomyces cerevisiae and the alloploid species Saccharomyces pastoria...

متن کامل

Diversity in organization and the origin of gene orders in the mitochondrial DNA molecules of the genus Saccharomyces.

Sequencing of the Saccharomyces cerevisiae nuclear and mitochondrial genomes provided a new background for studies on the evolution of the genomes. In this study, mitochondrial genomes of a number of Saccharomyces yeasts were mapped by restriction enzyme analysis, the orders of the genes were determined, and two of the genes were sequenced. The genome organization, i.e., the size, presence of i...

متن کامل

Genomic insights into the Saccharomyces sensu stricto complex.

The Saccharomyces sensu stricto group encompasses species ranging from the industrially ubiquitous yeast Saccharomyces cerevisiae to those that are confined to geographically limited environmental niches. The wealth of genomic data that are now available for the Saccharomyces genus is providing unprecedented insights into the genomic processes that can drive speciation and evolution, both in th...

متن کامل

The THI5 gene family of Saccharomyces cerevisiae: distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine.

The THI5 gene family of Saccharomyces cerevisiae comprises four highly conserved members named THI5 (YFL058w), THI11 (YJR156c), THI12 (YNL332w) and THI13 (YDL244w). Each gene copy is located within the subtelomeric region of a different chromosome and all are homologues of the Schizosaccharomyces pombe nmt1 gene which is thought to function in the biosynthesis of hydroxymethylpyrimidine (HMP), ...

متن کامل

Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex.

Along the fermentation process yeasts are affected by a succession of stress conditions that affect their viability and fermentation efficiency. Among the stress conditions the most relevant are high sugar concentration and low pH in musts, temperature and, as fermentation progresses, ethanol accumulation. Nowadays, due to the demanding nature of modern winemaking practices and sophisticated wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2017