Reversal of X chromosome inactivation: lessons from pluripotent reprogramming of mouse and human somatic cells

نویسنده

  • Irene Cantone
چکیده

For reprints contact: [email protected] X chromosome inactivation (XCI) is a strategy used by mammals to silence genes along one of the two female X chromosomes and equilibrate expression dosage between XY males and XX females. This epigenetically-inherited silencing is established during early embryonic development and maintained thereafter through cell divisions. Seeding of multiple repressive epigenetic marks along the inactive X chromosome (Xi) makes inactivation extremely robust and difficult to reverse upon single genetic perturbations. Reversal of XCI has, however, been observed when somatic cells are reprogrammed towards pluripotency, and in vitro reprogramming techniques have been used in recent years to dissect Xi gene reactivation mechanisms. These studies pave the way for developing novel therapeutic approaches for X-linked diseases. Here, the author reviews Xi reactivation during pluripotent reprogramming of mouse and human somatic cells, highlight recent advances and species-specific differences, and discuss the relevance for human diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

X chromosome inactivation: recent advances and a look forward.

X chromosome inactivation, the transcriptional inactivation of one X chromosome in somatic cells of female mammals, has revealed important advances in our understanding of development, epigenetic control, and RNA biology. Most of this knowledge comes from extensive studies in the mouse; however, there are some significant differences when compared to human biology. This is especially true in pl...

متن کامل

X Chromosome of Female Cells Shows Dynamic Changes in Status during Human Somatic Cell Reprogramming

Induced pluripotent stem cells (iPSCs) acquire embryonic stem cell (ESC)-like epigenetic states, including the X chromosome. Previous studies reported that human iPSCs retain the inactive X chromosome of parental cells, or acquire two active X chromosomes through reprogramming. Most studies investigated the X chromosome states in established human iPSC clones after completion of reprogramming. ...

متن کامل

I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction

Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017