Thermodynamics from first principles: temperature and composition of the Earth's core

نویسندگان

  • D. ALFÈ
  • M. J. GILLAN
  • G. D. PRICE
چکیده

We summarize the main ideas used to determine the thermodynamic properties of pure systems and binary alloys from first principles calculations. These are based on the ab initio calculations of free energies. As an application we present the study of iron and iron alloys under Earth’s core conditions. In particular, we report the whole melting curve of iron under these conditions, and we put constraints on the composition of the core. We found that iron melts at 6350±600 K at the pressure corresponding to the boundary between the solid inner core and the liquid outer core (ICB). We show that the core could not have been formed from a binary mixture of Fe with S, Si or O and we propose a ternary or quaternary mixture with 8 –10% of S/Si in both liquid and solid and an additional ~8% of oxygen in the liquid. Based on this proposed composition we calculate the shift of melting temperature with respect to the melting temperature of pure Fe of ~ –700 K, so that our best estimate for the temperature of the Earth’s core at ICB is 5650±600 K.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical - Spatial Analysis of the Core of Siberian High Pressure System Period 1955-2014)

One of the Siberian high pressure system is the Earth climate system, atmospheric important. The purpose of this study, analysis of core changes Siberian high pressure system in the period mentioned. To identify the core spatial variations in the timeframe mentioned data, daily sea level pressure and temperature of the earth's surface with a resolution of 2.5 degrees within the space of 30 to 6...

متن کامل

Thermodynamics and Kinetics of Vaporization of Pbs From Complex Cu-Fe Mattes

Thermodynamics and kinetics of vaporization of lead sulfide from typical copper-smelting mattes of commercial interest are investigated in the temperature range 1388 K to 1573 K by vapor transport technique and plasma arc spectroscopy. The total mass of the dominant vaporizing species PbS that leaves the matte is described by the Newman's numerical solution to the second Fick's law combined wit...

متن کامل

Sulfur in Earth's Mantle and Its Behavior during Core Formation

Introduction: The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation ...

متن کامل

Stability of body-centered cubic iron-magnesium alloys in the Earth's inner core.

The composition and the structure of the Earth's solid inner core are still unknown. Iron is accepted to be the main component of the core. Lately, the body-centered cubic (bcc) phase of iron was suggested to be present in the inner core, although its stability at core conditions is still in discussion. The higher density of pure iron compared with that of the Earth's core indicates the presenc...

متن کامل

Removal of Basic Dye Bromophenol Blue from aqueous solution by Electrocoagulation using Al – Fe Electrodes: Kinetics, Equilibrium and Thermodynamics Studies.

Electrocoagulation (EC) in a batch cell with Al anode and Fe cathode in monopolar parallel (MP) connection was used for the removal of basic dye, Bromophenol Blue (BPB). The effects of current density, pH, temperature and initial dye concentration, on the process were investigated. Equlibrium data were analyzed using four model equations: Langmuir, Freudlinch, Temkin and Dubinin–Radushkevich. D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003