Stabilized dual-mixed method for the problem of linear elasticity with mixed boundary conditions

نویسنده

  • María González
چکیده

We extend the applicability of the augmented dual-mixed method introduced recently in [4, 5] to the problem of linear elasticity with mixed boundary conditions. The method is based on the Hellinger–Reissner principle and the symmetry of the stress tensor is imposed in a weak sense. The Neuman boundary condition is prescribed in the finite element space. Then, suitable Galerkin least-squares type terms are added in order to obtain an augmented variational formulation which is coercive in the whole space. This allows to use any finite element subspaces to approximate the displacement, the Cauchy stress tensor and the rotation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS

Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...

متن کامل

MIXED BOUNDARY VALUE PROBLEM FOR A QUARTER-PLANE WITH A ROBIN CONDITION

We consider a mixed boundary value problem for a quarter-plane with a Robin condition on one edge. We have developed two procedures, one based on the advanced theory of dual integral equations and the other, in our opinion simpler technique, relying on conformal mapping. Both of the procedures are of interest, because the former may be easier to adapt to other boundary value problems.

متن کامل

Unsteady Heat and Mass Transfer Near the Stagnation-point on a Vertical Permeable Surface: a Comprehensive Report of Dual Solutions

In this paper, the problem of unsteady mixed convection boundary layer flow of a viscous incompressible fluid near the stagnation-point on a vertical permeable plate with both cases of prescribed wall temperature and prescribed wall heat flux is investigated numerically. Here, both assisting and opposing buoyancy forces are considered and studied. The non-linear coupled partial differential equ...

متن کامل

A posteriori error analysis of an augmented dual-mixed method in linear elasticity with mixed boundary conditions

We consider the augmented mixed finite element method introduced in [7] for the equations of plane linear elasticity with mixed boundary conditions. We develop an a posteriori error analysis based on the Ritz projection of the error and obtain an a posteriori error estimator that is reliable and efficient, but that involves a non-local term. Then, introducing an auxiliary function, we derive fu...

متن کامل

Two-Dimensional Elasticity Solution for Arbitrarily Supported Axially Functionally Graded Beams

First time, an analytical two-dimensional (2D) elasticity solution for arbitrarily supported axially functionally graded (FG) beam is developed. Linear gradation of the material property along the axis of the beam is considered. Using the strain displacement and constitutive relations, governing partial differential equations (PDEs) is obtained by employing Ressiner mixed var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2014