Walks in the Quarter Plane: Analytic Approach and Applications

نویسنده

  • Kilian Raschel
چکیده

In this survey we present an analytic approach to solve problems concerning (deterministic or random) walks in the quarter plane. We illustrate the recent breakthroughs in that domain with two examples. The first one is about the combinatorics of walks confined to the quarter plane, and more precisely about the numbers of walks evolving in the quarter plane and having given length, starting and ending points. We show how to obtain exact and asymptotic expressions for these numbers, and how to find the algebraic nature of their generating function. The second example deals with population biology, and more specifically with the extinction probabilities of certain flower populations. -6

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

About a possible analytic approach for walks in the quarter plane with arbitrary big jumps

Article history: Received 27 June 2014 Accepted after revision 25 November 2014 Available online 23 December 2014 Presented by the Editorial Board In this note, we consider random walks in the quarter plane with arbitrary big jumps. We announce the extension to that class of models of the analytic approach of [4], initially valid for walks with small steps in the quarter plane. New technical ch...

متن کامل

Classifying lattice walks restricted to the quarter plane

This work considers lattice walks restricted to the quarter plane, with steps taken from a set of cardinality three. We present a complete classification of the generating functions of these walks with respect to the classes algebraic, transcendental holonomic and non-holonomic. The principal results are a new algebraic class related to Kreweras’ walks; two new non-holonomic classes; and enumer...

متن کامل

Random Walks in the Quarter Plane, Harmonic Functions and Conformal Mappings

We propose here a new approach for finding harmonic functions of killed random walks with small steps in the quarter plane. It is based on solving a certain functional equation that satisfies the generating function of the values taken by the harmonic functions. As a first application of our results, we obtain a simple expression for the harmonic function that governs the asymptotic tail distri...

متن کامل

Random walks in the quarter plane, discrete harmonic functions and conformal mappings

We propose a new approach for finding discrete harmonic functions in the quarter plane with Dirichlet conditions. It is based on solving functional equations that are satisfied by the generating functions of the values taken by the harmonic functions. As a first application of our results, we obtain a simple expression for the harmonic function that governs the asymptotic tail distribution of t...

متن کامل

Two non-holonomic lattice walks in the quarter plane

We present two classes of random walks restricted to the quarter plane whose generating function is not holonomic. The non-holonomy is established using the iterated kernel method, a recent variant of the kernel method. This adds evidence to a recent conjecture on combinatorial properties of walks with holonomic generating functions. The method also yields an asymptotic expression for the numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013