Regulation of inducible nitric oxide synthase by dietary phytoestrogen in MCF-7 human mammary cancer cells.

نویسندگان

  • J T Hsu
  • C Ying
  • C J Chen
چکیده

We examined the effects of the phytoestrogen biochanin A on the growth of the MCF-7 human breast cancer cell line. The results showed that biochanin A treatment induced dose- and time-dependent inhibition on MCF-7 cell growth at concentrations above 20 microg x mL(-1). An examination of treated MCF-7 cell morphology revealed condensation of the chromosome and dehydration of the cytoplasm, suggesting apoptosis as an important factor in biochanin A-related cell growth inhibition. The results also showed that at a concentration of 40 microg x mL(-1), biochanin A decreased the levels of inducible nitric oxide synthase, thus inhibiting the production of nitric oxide, a known second messenger and inducer of apoptosis, and affecting the overall cell protein pattern. No significant difference in superoxide dismutase protein levels were, however detected at concentrations of 40 or 100 microg x mL(-1) of biochanin A. The data suggest that the inhibitory effects of biochanin A on human breast cancer cell growth are linked to inducible nitric oxide synthase and the associated production of nitric oxide.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells

Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...

متن کامل

Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells

Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...

متن کامل

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Relaxin activates the L-arginine-nitric oxide pathway in human breast cancer cells.

Recently, we demonstrated that relaxin (RLX), a peptide hormone of ovarian origin, inhibits growth and promotes differentiation of MCF-7 breast adenocarcinoma cells. We also showed that RLX stimulates the production of nitric oxide (NO) in several cell types. NO has been reported to have antitumor activity by inhibiting proliferation, promoting differentiation, and reducing the metastatic sprea...

متن کامل

Statin-induced breast cancer cell death: role of inducible nitric oxide and arginase-dependent pathways.

Statins are widely used cholesterol-lowering drugs that selectively inhibit the enzyme 3-hydroxy-3-methylglutaryl CoA reductase, leading to decreased cholesterol biosynthesis. Emerging data indicate that statins stimulate apoptotic cell death in several types of proliferating tumor cells, including breast cancer cells, which is independent of its cholesterol-lowering property. The objective her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Reproduction, nutrition, development

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 2000