Thermohaline Circulation Stability: Study
نویسندگان
چکیده
A thorough analysis of the stability of uncoupled and coupled versions of an interhemispheric 3-box model of Thermohaline Circulation (THC) is presented. The model consists of a northern high latitudes box, a tropical box, and a southern high latitudes box, which respectively can be thought as corresponding to the northern, tropical and southern Atlantic ocean. We study how the strength of THC changes when the system undergoes forcings that are analogous to those of global warming conditions. In each class of experiments, we determine, using suitably defined metrics, the boundary dividing the set of forcing scenarios that lead the system to equilibria characterized by a THC pattern similar to the present one, from those that drive the system to equilibria where the THC is reversed. In the case of the uncoupled model, we apply to the equilibrium state perturbations to the moisture and heat fluxes into the three boxes. High rates of increase in the moisture flux into the northern high-latitude box lead to a THC breakdown at smaller total final increases in the moisture flux than low rates, while the presence of moisture flux increases into the southern high-latitude box strongly inhibit the breakdown and can prevent it, in the case of slow rates in the Northern Hemisphere. Similarly, a fast heat flux increases in the North Hemisphere destabilize the system more effectively than slow ones, and again the enhancement of the heat fluxes in the Southern Hemisphere tend to drive the system towards stability. In all cases analyzed slow forcings, if sufficiently weak in the Southern Hemisphere, lead to the reversal of the THC. In the coupled model a direct representation of the radiative forcing is possible, since the main atmospheric physical processes responsible for freshwater and heat fluxes are formulated separately. Although only weakly asymmetric or symmetric radiative forcings are representative of physically reasonable conditions, we consider general asymmetric forcings, in order to get a more complete picture of the mathematical properties of the system. We also consider different choices for the atmospheric transport parametrizations and for the ratio between the high latitude to tropical radiative forcing, and analyze the senstivity of our results to changes in these parameters. We generally find that fast forcings are more effective than slow forcings in disrupting the present THC patterns, forcings that are stronger in the northern box are also more effective in destabilizing the system, and that very slow forcings do not destabilize the system whatever their asymmetry, unless the radiative forcings are very asymmetric and the atmospheric transport is a relatively weak function of the meridional temperature gradient. The changes in the strength of the THC are primarily forced by changes in the latent heat transports, because of their sensitivity to temperature that arises from the Clausius-Clapeyron relation. Thesis Supervisor: Peter H. Stone Title: Professor of Climate Dynamics
منابع مشابه
Stability of the Thermohaline Circulation in a Simple Coupled Model
In an analytical study the stability of the thermohaline circulation with respect to freshwater perturbations in high latitudes is investigated. The study is based on a coupled ocean and atmosphere box model in an idealized North Atlantic geometry. The box model provides a qualitative understanding of how the thermohaline circulation is a ected by feedback mechanisms associated with changes in ...
متن کاملVariability of the Thermohaline Circulation in an Ocean General Circulation Model Coupled to an Atmospheric Energy Balance Model
We examine the variability of the ocean’s thermohaline circulation in a Oceanic General Circulation Model (OGCM) coupled to a two dimensional atmospheric Energy Balance Model (EBM). The EBM calculates air temperatures by balancing heat fluxes, including that from the ocean surface; air temperature and ocean circulation evolve together without imposed temperature restrictions except specificatio...
متن کاملNoise-induced Transitions in a Simpliied Model of the Thermohaline Circulation
A simpli ed box ocean model for the North Atlantic is used to study the in uence of multiplicative short-term climate variability on the stability and long-term dynamics of the North Atlantic thermohaline circulation. A timescale separation between fast temperature ans slow salinity uctuations is used to decouple the dynamical equations resulting in a multiplicative stochastic di erential equat...
متن کاملInfluence of Vertical Mixing on the Thermohaline Hysteresis: Analyses of an OGCM
The thermohaline hysteresis response to varying North Atlantic freshwater forcing is studied by means of a three-dimensional global ocean general circulation model (OGCM). The influence of vertical diffusivity is examined using a wide range of mixing coefficients. For sufficiently large vertical diffusivity the model shows a pronounced hysteresis behavior, so that two equilibrium states of the ...
متن کاملStability of the thermohaline circulation under millennial CO2 forcing and two alternative controls on Atlantic salinity
[1] A large ensemble of experiments with an efficient climate model is carried out to examine stability of the oceanic thermohaline circulation (THC) as a function of two key processes that maintain high Atlantic salinities: the ‘‘Atmospheric Bridge’’ by which moisture is exported from the Atlantic to the Pacific; and ‘‘Agulhas Leakage’’ of salty Indian Ocean waters into the Atlantic. We find t...
متن کاملThe sensitivity and stability of the ocean’s thermohaline circulation to finite amplitude perturbations
Within a simple model context, the sensitivity and stability of the thermohaline circulation to finite amplitude perturbations is studied. A new approach is used to tackle this nonlinear problem. The method is based on the computation of the so-called Conditional Nonlinear Optimal Perturbation (CNOP) which is a nonlinear generalization of the linear singular vector approach (LSV). It is shown t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010