Charrelation Matrix Based ICA
نویسندگان
چکیده
Charrelation matrices are a generalization of the covariance matrix, encompassing statistical information beyond second order while maintaining a convenient 2-dimensional structure. In the context of ICA, charrelation matrices-based separation was recently shown to potentially attain superior performance over commonly used methods. However, this approach is strongly dependent on proper selection of the parameters (termed processing-points) which parameterize the charrelation matrices. In this work we derive a data-driven criterion for proper selection of the set of processing-points. The proposed criterion uses the available mixtures samples to quantify the resulting separation errors’ covariance matrix in terms of the processing points. Minimizing the trace of this matrix with respect to the processing points enables to optimize (asymptotically) the selection of these points, thereby yielding better separation results than other methods, as we demonstrate in simulation.
منابع مشابه
Blind Identification of Underdetermined Mixtures Based on Charrelation Matrix
In this paper, we propose a novel algorithm for underdetermined blind identification problems in blind signal separation. The proposed algorithm is based on the charrelation matrix of observations. The charrelation matrix can not only be considered as a generalized covariance matrix, but also incorporates higher-order information. It is significant for blind separation problem based on statisti...
متن کاملA Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems
In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unkn...
متن کاملBlind Source Separation Based on Fast-convergence Algorithm Using Ica and Array Signal Processing
ABSTRACT We propose a new algorithm for blind source separation (BSS), in which independent component analysis (ICA) and beamforming are combined to resolve the low-convergence problem through optimization in ICA. The proposed method consists of the following three parts: (1) frequency-domain ICA with direction-of-arrival (DOA) estimation, (2) null beamforming based on the estimated DOA, and (3...
متن کاملBlind source separation for speech based on fast-convergence algorithm with ICA and beamforming
We propose a new algorithm for blind source separation (BSS), in which independent component analysis (ICA) and beamforming are combined to resolve the low-convergence problem through optimization in ICA. The proposed method consists of the following three parts: (1) frequency-domain ICA with direction-of-arrival (DOA) estimation, (2) null beamforming based on the estimated DOA, and (3) integra...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012