High Degree Vertices and Eigenvalues in the Preferential Attachment Graph
نویسندگان
چکیده
The preferential attachment graph is a random graph formed by adding a new vertex at each time-step, with a single edge which points to a vertex selected at random with probability proportional to its degree. Every m steps the most recently added m vertices are contracted into a single vertex, so at time t there are roughly t/m vertices and exactly t edges. This process yields a graph which has been proposed as a simple model of the World Wide Web [Barabási and Albert 99]. For any constant k, let ∆1 ≥ ∆2 ≥ · · · ≥ ∆k be the degrees of the k highest degree vertices. We show that at time t, for any function f with f(t) → ∞ as t → ∞, t1/2 f(t) ≤ ∆1 ≤ tf(t), and for i = 2, . . . , k, t 1/2 f(t) ≤ ∆i ≤ ∆i−1 − t1/2 f(t) , with high probability (whp). We use this to show that at time t the largest k eigenvalues of the adjacency matrix of this graph have λk = (1± o(1))∆ k whp.
منابع مشابه
Normalized laplacian spectrum of two new types of join graphs
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
متن کاملOn net-Laplacian Energy of Signed Graphs
A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...
متن کاملLaplacian Energy of a Fuzzy Graph
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...
متن کاملThe Main Eigenvalues of the Undirected Power Graph of a Group
The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...
متن کاملThe Fine Structure of Preferential Attachment Graphs I: Somewhere-Denseness
Preferential attachment graphs are random graphs designed to mimic properties of typical real word networks. They are constructed by a random process that iteratively adds vertices and attaches them preferentially to vertices that already have high degree. We use improved concentration bounds for vertex degrees to show that preferential attachment graphs contain asymptotically almost surely (a....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Internet Mathematics
دوره 2 شماره
صفحات -
تاریخ انتشار 2003