On Isotropic Submanifolds and Evolution of Quasicaustics

نویسنده

  • STANISLAW JANECZKO
چکیده

The mapping TUM is the tangent mapping of % : T*M -» M and ττ*M: TT*M —• T*M is the tangent bundle projection. If (#,•) are local coordinates introduced in M, and (p*, q{) are corresponding local coordinates in T*M then O>M has the normal (Darboux) form coM = EU<tPi*dqi [We]. We recall that a submanifold C c {X, ω) is coisotropic if, at each x E C, the symplectic polar of TXC defined by C£ = {v e TXX: (v Λ u, ω) = 0 for every w e ΓXC} is contained in Γ X C By (vAu,ω) we denote the evaluation of ω on the pair of vectors υ, u e TXX. If C£ = ΓXC for each x G C then C is called the Lagrangian submanifold of X . In this case ω\c = 0, and dimC = ^dimX. We see that dimC^= codimC and {C^} forms the characteristic distribution of ω\c Thus the distribution D = \Jχec €χ * i^volutive. Maximal connected integral manifolds of D are called bicharacteristics. They form the characteristic foliation of C (cf. [AM]). D represents the generalized Hamiltonian system

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropic Lagrangian Submanifolds in Complex Space Forms

In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.

متن کامل

Averaging of isotropic submanifolds

We will give a construction to obtain canonically an “isotropic average“ of given C close isotropic submanifolds of a Kähler manifold. The isotropic average will be C close to the given submanifolds. The construction relies on an averaging procedure by Weinstein and on “Moser’s trick”.

متن کامل

Diffeomorphisms Preserving Symplectic Data on Submanifolds

We characterize general symplectic manifolds and their structure groups through a family of isotropic or symplectic submanifolds and their diffeomorphic invariance. In this way we obtain a complete geometric characterization of symplectic diffeomorphisms and a reinterpretation of symplectomorphisms as diffeomorphisms acting purely on isotropic or symplectic submanifolds. DOI: 10.1134/S008154380...

متن کامل

Contact Geometry

2 Contact manifolds 4 2.1 Contact manifolds and their submanifolds . . . . . . . . . . . . . . 6 2.2 Gray stability and the Moser trick . . . . . . . . . . . . . . . . . . 13 2.3 Contact Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Darboux’s theorem and neighbourhood theorems . . . . . . . . . . 17 2.4.1 Darboux’s theorem . . . . . . . . . . . . . . . . . . . . . . . 17...

متن کامل

Volume Minimization and Estimates for Certain Isotropic Submanifolds in Complex Projective Spaces

In this note we show the following result using the integral-geometric formula of R. Howard: Consider the totally geodesic RP 2m in CP n. When it minimizes volume among the isotropic submanifolds in the same Z/2 homology class in CP n (but not among all submanifolds in this Z/2 homology class). Also the totally geodesic RP 2m−1 minimizes volume in its Hamiltonian deformation class in CP n. As a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004