Microbial communities mediating algal detritus turnover under anaerobic conditions

نویسندگان

  • Jessica M. Morrison
  • Chelsea L. Murphy
  • Kristina Baker
  • Richard M. Zamor
  • Steve J. Nikolai
  • Shawn Wilder
  • Mostafa S. Elshahed
  • Noha H. Youssef
چکیده

BACKGROUND Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. RESULTS Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O' the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13-16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched included the uncultured groups VadinBC27 and WCHB1-69 within the Bacteroidetes, genus Spirochaeta and the uncultured group SHA-4 within Spirochaetes, Ruminococcaceae, Lachnospiraceae, Yongiibacter, Geosporobacter, and Acidaminobacter within the Firmicutes, and genera Kluyvera, Pantoea, Edwardsiella and Aeromonas, and Buttiauxella within the Gamma-Proteobaceteria order Enterobacteriales. CONCLUSIONS Our results represent the first systematic survey of microbial communities mediating turnover of algal biomass under anaerobic conditions, and highlights the diversity of lineages putatively involved in the degradation process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Silico Analysis of the Metabolic Potential and Niche Specialization of Candidate Phylum "Latescibacteria" (WS3)

The "Latescibacteria" (formerly WS3), member of the Fibrobacteres-Chlorobi-Bacteroidetes (FCB) superphylum, represents a ubiquitous candidate phylum found in terrestrial, aquatic, and marine ecosystems. Recently, single-cell amplified genomes (SAGs) representing the "Latescibacteria" were obtained from the anoxic monimolimnion layers of Sakinaw Lake (British Columbia, Canada), and anoxic sedime...

متن کامل

Metabolic network analysis reveals microbial community interactions in anammox granules

Microbial communities mediating anaerobic ammonium oxidation (anammox) represent one of the most energy-efficient environmental biotechnologies for nitrogen removal from wastewater. However, little is known about the functional role heterotrophic bacteria play in anammox granules. Here, we use genome-centric metagenomics to recover 17 draft genomes of anammox and heterotrophic bacteria from a l...

متن کامل

Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis.

Correlations between the biomass of phytoplankton and the biomass of bacteria and between the biomass of bacteria and the biomass of protozoans suggest that there is coupling between these compartments of the "microbial loop." To investigate this coupling on the species level, bacteria and protozoans from untreated lake water inocula were allowed to grow on detritus of the green alga Ankistrode...

متن کامل

Zebra mussels mediate benthic-pelagic coupling by biodeposition and changes in detrital stoichiometry

1. The zebra mussel (Dreissena polymorpha) is one of the most successful invasive species; it has colonised many aquatic systems in Europe and North America with strong impacts on various ecosystem processes. The effect of D. polymorpha filtration on pelagic seston concentrations has been quantified in several studies, but the magnitude and stoichiometry of the transfer of sestonic biomass into...

متن کامل

Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession.

Although we understand the ecological processes eliciting changes in plant community composition during secondary succession, we do not understand whether co-occurring changes in plant detritus shape saprotrophic microbial communities in soil. In this study, we investigated soil microbial composition and function across an old-field chronosequence ranging from 16 to 86 years following agricultu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017