Regulatory mechanism of melatonin on the retinal ganglion cell photoreaction in mice
نویسندگان
چکیده
The study aimed to analyze the regulatory mechanism of melatonin (MLT) on the retinal ganglion cell photoreaction in mice. Forty-eight, 3-week-old healthy ICR mice, regardless of gender, were randomly divided into 4 groups. Group A was exposed to an illumination/dark time of 0 h/24 h, 6 h/18 h in group B, 12 h/12 h in group C and 18 h/6 h in group D, for up to 6 weeks. Four mice in each group were sacrificed at week 1, 3 and 6, respectively, for harvesting of retinal ganglion cells. ELISA was used to detect nocturnal plasma MLT levels at midnight. Immunohistochemistry was used to detect the expression of the retinal MLT receptor and the expression levels of inducible nitric oxide synthase (iNOS) and c-fos protein. The plasma MLT levels, MLT receptor levels and c-fos protein expression levels of group C, after 1, 3 and 6 weeks of light application, were the highest, followed by groups B and D, while group A had the lowest levels. For each illumination time, the iNOS levels of group C were the lowest and group A was the highest. Differences were all statistically significant (P<0.05). In conclusion, appropriate illumination regimens can increase c-fos protein, decrease iNOS activity and regulate the physiological activities of the retinal ganglion cells by regulating the expressions of MLT and its receptor.
منابع مشابه
Retinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography
Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...
متن کاملThe Effect of Melatonin on Retinal Ganglion Cell Survival in Ischemic Retina
Our objective was to determine whether melatonin increases retinal ganglion cell (RGC) survival in ischemic mouse retina. Transient retinal ischemia was induced by an acute elevation of intraocular pressure in C57BL/6 mice. To evaluate the effect of melatonin on retinal ischemia, an equal amount of either melatonin or vehicle was intraperitoneally injected into the mice 1 hour before ischemia, ...
متن کاملStem Cells in Glaucoma Management
Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...
متن کاملMelatonin modulates visual function and cell viability in the mouse retina via the MT1 melatonin receptor.
A clear demonstration of the role of melatonin and its receptors in specific retinal functions is lacking. The present study investigated the distribution of MT1 receptors within the retina, and the scotopic and photopic electroretinograms (ERG) and retinal morphology in wild-type (WT) and MT1 receptor-deficient mice. MT1 receptor transcripts were localized in photoreceptor cells and in some in...
متن کاملChloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells
Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2017