Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

نویسندگان

  • Hideharu Shimizu
  • Shuji Nagano
  • Akira Uedono
  • Nobuo Tajima
  • Takeshi Momose
  • Yukihiro Shimogaki
چکیده

Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs), with a low dielectric constant (k-value) and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si-C2H4-Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD) using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si-C2H4-Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth and Characterization of Thin MoS2 Films by Low- Temperature Chemical Bath Deposition Method

Transition metal dichalcogenide (TMDC) materials are very important inelectronic and optical integrated circuits and their growth is of great importance in thisfield. In this paper we present growth and fabrication of MoS2 (Molibdan DiSulfide)thin films by chemical bath method (CBD). The CBD method of growth makes itpossible to simply grow large area scale of the thin la...

متن کامل

Grain Growth Mechanism of Cu Thin Films

Since Cu was found to be attractive as interconnect materials for ultra-large scale integrated (ULSI) Si devices, the electrical properties of Cu films have been extensively studied to prepare low resistance films. It was found in our previous papers that reduction of the electrical resistance of the Cu films was achieved by increasing grain sizes of the Cu films and large-grained Cu films were...

متن کامل

Ultrathin CVD Cu Seed Layer Formation Using Copper Oxynitride Deposition and Room Temperature Remote Hydrogen Plasma Reduction

Cu seed layers for future interconnects must have conformal step coverage, smooth surface morphology, and strong adhesion. Conformal deposition had been achieved by chemical vapor deposition CVD , but CVD Cu films have rough surfaces and poor adhesion. In this paper, conformal, smooth, adherent, continuous, and thin 9 nm Cu films were made by CVD. CuON was deposited from a Cu-amidinate precurso...

متن کامل

Chemically enhanced physical vapor deposition of tantalum nitride-based films for ultra-large-scale integrated devices

Physical vapor deposition (PVD) using ionized metal plasmas (ionized PVD or IPVD) is widely used to deposit conducting diffusion barriers and liners such as Ta and TaN for use in ultra-large-scale integrated (ULSI) interconnect stacks. Ionized PVD films exhibit the low resistivity, high density, and good adhesion to underlying dielectric desired for this application. On the other hand, extendin...

متن کامل

Synthesis of Boron-Aluminum Nitride Thin Film by Chemical Vapour Deposition Using Gas Bubbler

Boron included aluminium nitride (B-AlN) thin films were synthesized on silicon (Si) substrates through chemical vapour deposition ( CVD ) at 773 K (500 °C). tert-buthylamine (tBuNH2) solution was used as nitrogen source and delivered through gas bubbler. B-AlN thin films were prepared on Si-100 substrates by varying gas mixture ratio of three precursors. The structural properties of the films ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013