Tracking Multiple Speakers with Probabilistic Data Association Filters
نویسندگان
چکیده
In prior work, we developed a speaker tracking system based on an extended Kalman filter using time delays of arrival (TDOAs) as acoustic features. In particular, the TDOAs comprised the observation associated with an iterated extended Kalman filter (IEKF) whose state corresponds to the speaker position. In other work, we followed the same approach to develop a system that could use both audio and video information to track a moving lecturer. While these systems functioned well, their utility was limited to scenarios in which a single speaker was to be tracked. In this work, we seek to remove this restriction by generalizing the IEKF, first to a probabilistic data association filter, which incorporates a clutter model for rejection of spurious acoustic events, and then to a joint probabilistic data association filter (JPDAF), which maintains a separate state vector for each active speaker. In a set of experiments conducted on seminar and meeting data, we demonstrate that the JPDAF provides tracking performance superior to the IEKF.
منابع مشابه
Tracking and beamforming for multiple simultaneous speakers with probabilistic data association filters
In prior work, we developed a speaker tracking system based on an extended Kalman filter using time delays of arrival (TDOAs) as acoustic features. While this system functioned well, its utility was limited to scenarios in which a single speaker was to be tracked. In this work, we remove this restriction by generalizing the IEKF, first to a probabilistic data association filter, which incorpora...
متن کاملMultiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملTracking and Far-Field Speech Recognition for Multiple Simultaneous Speakers
In prior work, we developed a speaker tracking system based on an extended Kalman filter using time delays of arrival (TDOAs) as acoustic features. While this system functioned well, its utility was limited to scenarios in which a single speaker was to be tracked. In this work, we remove this restriction by generalizing the IEKF, first to a probabilistic data association filter, which incorpora...
متن کاملParallel particle filters for multiple target tracking
The Multiple Targets Tracking (MTT) problem is addressed in signal and image processing. When the state and measurement models are linear, we can find several algorithms that yield good performances in MTT problem, among them, the Multiple Hypotheses Tracker (MHT) and the Joint Probabilistic Data Association Filter (JPDAF). However, if the state and measurement models are nonlinear, these algor...
متن کاملA Data Association Algorithm for Multiple Object Tracking in Video Sequences
This paper presents a particle filtering algorithm for multiple object tracking. The proposed particle filter (PF) embeds a data association technique based on the joint probabilistic data association (JPDA) which handles the uncertainty of the measurement origin.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006