Stagewise Learning for Sparse Clustering of Discretely-Valued Data

نویسندگان

  • Vincent Zhao
  • Steven W. Zucker
چکیده

We develop an algorithm to learn Bernoulli Mixture Models based on the principle that some variables are more informative than others. Working from an information-theoretic perspective, we propose both backward and forward schemes for selecting the informative ’active’ variables and using them to guide EM. The result is a stagewise EM algorithm, analogous to stagewise approaches to linear regression, that should be applicable to neuroscience (and other) datasets with confounding (or irrelevant) variables. Results on synthetic and MNIST datasets illustrate the approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general framework for fast stagewise algorithms

Forward stagewise regression follows a very simple strategy for constructing a sequence of sparse regression estimates: it starts with all coefficients equal to zero, and iteratively updates the coefficient (by a small amount ) of the variable that achieves the maximal absolute inner product with the current residual. This procedure has an interesting connection to the lasso: under some conditi...

متن کامل

Spiking Neurons by Sparse Temporal Coding and Multilayer Rbf Networks

We demonstrate that spiking neural networks encoding information in the timing of single spikes are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on real-world data, and we demonstrate how temporal synchrony in a multi-layer network can induce h...

متن کامل

A Stagewise Least Square Loss Function for Classification

This paper presents a stagewise least square (SLS) loss function for classification. It uses a least square form within each stage to approximate a bounded monotonic nonconvex loss function in a stagewise manner. Several benefits are obtained from using the SLS loss function, such as: (i) higher generalization accuracy and better scalability than classical least square loss; (ii) improved perfo...

متن کامل

Boosting for Model-Based Data Clustering

In this paper a novel and generic approach for model-based data clustering in a boosting framework is presented. This method uses the forward stagewise additive modeling to learn the base clustering models. The experimental results on relatively large scale datasets and also Caltech4 object recognition set demonstrate how the performance of relatively simple and computationally efficient base c...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015