Land Cover Classification of Palsar Images by Knowledge Based Decision Tree Classi- Fier and Supervised Classifiers Based on Sar Observables
نویسندگان
چکیده
The intent of this paper is to explore the application of information obtained from fully polarimetric data for land cover classification. Various land cover classification techniques are available in the literature, but still uncertainty exists in labeling various clusters to their own classes without using any a priori information. Therefore, the present work is focused on analyzing useful intrinsic information extracted from SAR observables obtained by various decomposition techniques. The eigenvalue decomposition and Pauli decomposition have been carried out to separate classes on the basis of their scattering mechanisms. The various classification techniques (supervised: minimum distance, maximum likelihood, parallelepiped and unsupervised: Wishart) were applied in order to see possible differences among SAR observables in terms of information that they contain and their usefulness in classifying particular land cover type. Another important issue is labeling the clusters, and this work is carried out by decision tree classification that uses knowledge based approach. This classifier is implemented by scrupulous knowledge of data obtained by empirical evidence and their experimental validation. It has been demonstrated quantitatively that standard polarimetric parameters such as polarized backscatter coefficients (linear, circular Received 14 January 2011, Accepted 13 April 2011, Scheduled 29 April 2011 Corresponding author: Dharmendra Singh ([email protected]). 48 Mishra, Singh, and Yamaguchi and linear 45◦), co and cross-pol ratios for both linear and circular polarizations can be used as information bearing features for making decision boundaries. This forms the basis of discrimination between various classes in sequential format. The classification approach has been evaluated for fully polarimetric ALOS PALSAR L-band level 1.1 data. The classifier uses these data to classify individual pixel into one of the five categories: water, tall vegetation, short vegetation, urban and bare soil surface. The quantitative results shown by this classifier give classification accuracy of about 86%, which is better than other classification techniques.
منابع مشابه
Land Cover Classification Using IRS-1D Data and a Decision Tree Classifier
Land cover is one of basic data layers in geographic information system for physical planning and environmentalmonitoring. Digital image classification is generally performed to produce land cover maps from remote sensing data,particularly for large areas. In the present study the multispectral image from IRS LISS-III image along with ancillary datasuch as vegetation indices, principal componen...
متن کاملFirst Assessment of Polarimetric Images from Alos - Palsar: Check of Polarimetric Calibration and Assessment of Land - Cover Classification Potential
This study is a first assessment of fully polarimetric SAR data from the Advanced Land Observation Satellite (ALOS) – Phased Array type L-band Synthetic Aperture Radar (PALSAR) over the test-site of Oberpfaffenhofen in Germany. The polarimetric calibration is checked by using corner reflectors on the Oberpfaffenhofen test-site. Further, the fully polarimetric images are classified by using the ...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملComparison of Performance in Image Classification Algorithms of Satellite in Detection of Sarakhs Sandy zones
Extended abstract 1- Introduction Wind erosion as an “environmental threat” has caused serious problems in the world. Identifying and evaluating areas affected by wind erosion can be an important tool for managers and planners in the sustainable development of different areas. nowadays there are various methods in the world for zoning lands affected by wind erosion. One of the most important...
متن کاملCombination of Genetic Algorithm and Dempster-shafer Theory of Evidence for Land Cover Classification Using Integration of Sar and Optical Satellite Imagery
The integration of different kinds of remotely sensed data, in particular Synthetic Aperture Radar (SAR) and optical satellite imagery, is considered a promising approach for land cover classification because of the complimentary properties of each data source. However, the challenges are: how to fully exploit the capabilities of these multiple data sources, which combined datasets should be us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011