Growth of engineered human myocardium with mechanical loading and vascular coculture.
نویسندگان
چکیده
RATIONALE The developing heart requires both mechanical load and vascularization to reach its proper size, yet the regulation of human heart growth by these processes is poorly understood. OBJECTIVE We seek to elucidate the responses of immature human myocardium to mechanical load and vascularization using tissue engineering approaches. METHODS AND RESULTS Using human embryonic stem cell and human induced pluripotent stem cell-derived cardiomyocytes in a 3-dimensional collagen matrix, we show that uniaxial mechanical stress conditioning promotes 2-fold increases in cardiomyocyte and matrix fiber alignment and enhances myofibrillogenesis and sarcomeric banding. Furthermore, cyclic stress conditioning markedly increases cardiomyocyte hypertrophy (2.2-fold) and proliferation rates (21%) versus unconditioned constructs. Addition of endothelial cells enhances cardiomyocyte proliferation under all stress conditions (14% to 19%), and addition of stromal supporting cells enhances formation of vessel-like structures by ≈10-fold. Furthermore, these optimized human cardiac tissue constructs generate Starling curves, increasing their active force in response to increased resting length. When transplanted onto hearts of athymic rats, the human myocardium survives and forms grafts closely apposed to host myocardium. The grafts contain human microvessels that are perfused by the host coronary circulation. CONCLUSIONS Our results indicate that both mechanical load and vascular cell coculture control cardiomyocyte proliferation, and that mechanical load further controls the hypertrophy and architecture of engineered human myocardium. Such constructs may be useful for studying human cardiac development as well as for regenerative therapy.
منابع مشابه
Cellular Biology Growth of Engineered Human Myocardium With Mechanical Loading and Vascular Coculture
متن کامل
Gene expression profiles in engineered cardiac tissues respond to mechanical loading and inhibition of tyrosine kinases
Engineered cardiac tissues (ECTs) are platforms to investigate cardiomyocyte maturation and functional integration, the feasibility of generating tissues for cardiac repair, and as models for pharmacology and toxicology bioassays. ECTs rapidly mature in vitro to acquire the features of functional cardiac muscle and respond to mechanical load with increased proliferation and maturation. ECTs are...
متن کاملMechanical loading of stem cells for improvement of transplantation outcome in a model of acute myocardial infarction: the role of loading history.
Stem cell therapy for tissue repair is a rapidly evolving field and the factors that dictate the physiological responsiveness of stem cells remain under intense investigation. In this study we hypothesized that the mechanical loading history of muscle-derived stem cells (MDSCs) would significantly impact MDSC survival, host tissue angiogenesis, and myocardial function after MDSC transplantation...
متن کاملThe Higher Response of Vascular Endothelial Growth Factor and Angiotensin-II to Human Chorionic Gonadotropin in Women with Polycystic Ovary Syndrome
Background This research investigated the response of vascular active factors, vascular endothelial growth factor (VEGF) and angiotensin-II (AT-II) to ovarian stimulation during 24 hours in patients with polycystic ovary syndrome (PCOS). MaterialsAndMethods In this clinical trial study, 52 patients with PCOS and 8 control cases were stimulated with human chorionic gonadotropin (HCG) on the 4th ...
متن کاملP-29: Effects of Growth Factors and GranulosaCell Coculture on In vitro Maturation ofOocytes
Background: The maturation medium for in-vitro oocyte maturation is usually supplemented with serum. However, supplementation of serum from pregnant women adversely affects the outcome of in-vitro maturation. The purpose of the study was to assess if growth factors or granulosa cell coculture could overcome the adverse effects of pregnant women’s serum. Materials and Methods: The basal maturati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 109 1 شماره
صفحات -
تاریخ انتشار 2011