Improving Localization Robustness in Monocular SLAM Using a High-Speed Camera

نویسندگان

  • Peter Gemeiner
  • Andrew Davison
  • Markus Vincze
چکیده

In the robotics community localization and mapping of an unknown environment is a well-studied problem. To solve this problem in real-time using visual input, a standard monocular Simultaneous Localization and Mapping (SLAM) algorithm can be used. This algorithm is very stable when smooth motion is expected, but in case of erratic or sudden movements, the camera pose typically gets lost. To improve robustness in Monocular SLAM (MonoSLAM) we propose to use a camera with faster readout speed to obtain a frame rate of 200Hz. We further present an extended MonoSLAM motion model, which can handle movements with significant jitter. In this work the improved localization and mapping have been evaluated against ground truth, which is reconstructed from off-line vision. To explain the benefits of using a high frame rate vision input in MonoSLAM framework, we performed repeatable experiments with a high-speed camera mounted onto a robotic arm. Due to the dense visual information MonoSLAM can faster shrink localization and mapping uncertainties and can operate under fast, erratic, or sudden movements. The extended motion model can provide additional robustness against significant handheld jitter when throwing or shaking the camera.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Agility of Keyframe-Based SLAM

The ability to localise a camera moving in a previously unknown environment is desirable for a wide range of applications. In computer vision this problem is studied as monocular SLAM. Recent years have seen improvements to the usability and scalability of monocular SLAM systems to the point that they may soon find uses outside of laboratory conditions. However, the robustness of these systems ...

متن کامل

Mapping Large Loops with a Single Hand-Held Camera

This paper presents a method for Simultaneous Localization and Mapping (SLAM), relying on a monocular camera as the only sensor, which is able to build outdoor, closed-loop maps much larger than previously achieved with such input. Our system, based on the Hierarchical Map approach [1], builds independent local maps in real-time using the EKF-SLAM technique and the inverse depth representation ...

متن کامل

[inria-00544793, v1] Improving monocular plane-based SLAM with inertial measures

This article presents a solution to the problem of fusing measurements acquired from a monocular camera with inertial data to achieve simultaneous localization and mapping (SLAM) tasks. This paper describes the models used to correctly integrate inertial and vision data in an EKF-SLAM based application, and ways to perform the fusion on low cost hardware. Both synthetic and real sequences show ...

متن کامل

Real-Time and Robust Monocular SLAM Using Predictive Multi-resolution Descriptors

We describe a robust system for vision-based SLAM using a single camera which runs in real-time, typically around 30 fps. The key contribution is a novel utilisation of multi-resolution descriptors in a coherent top-down framework. The resulting system provides superior performance over previous methods in terms of robustness to erratic motion, camera shake, and the ability to recover from meas...

متن کامل

Camera-Agnostic Monocular SLAM and Semi-dense 3D Reconstruction

This paper discusses localisation and mapping techniques based on a single camera. After introducing the given problem, which is known as monocular SLAM, a new camera agnostic monocular SLAM system (CAM-SLAM) is presented. It was developed within the scope of this work and is inspired by recently proposed SLAM-methods. In contrast to most other systems, it supports any central camera model such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008