Strongly torsion generated groups

نویسنده

  • A. J. Berrick
چکیده

It has long been known that the integral homology of a non-trivial finite group must be non-zero in infinitely many dimensions [15]. Recent work on the Sullivan Conjecture in homotopy theory has made it possible to extend this result to non-acyclic locally finite groups. For more general groups with torsion it becomes more difficult to make such a strong statement. Nevertheless we show that when a non-perfect group is generated by torsion elements its integral homology must also be non-zero in infinitely many dimensions. Remarkably, this result is best possible in that for perfect torsion generated groups all (finite or infinite) sequences of abelian groups are shown to be attainable as homology groups. Surprisingly, it is often preferable to work with a special subclass of torsion generated groups, here called strongly torsion generated groups, which is of interest in its own right.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Torsion Generated Groups from K-theory of Real C∗-algebras

We pursue the program initiated in [7], which consists of an attempt by means of K-theory to construct a strongly torsion generated group with prescribed center and integral homology in dimensions two and higher. Using algebraic and topological K-theory for real C∗-algebras, we realize such a construction up to homological dimension five. We also explore the limits of the K-theoretic approach.

متن کامل

Comments on Strongly Torsion-free Groups

In the present note, we discuss certain observations made by the author in February 2009 concerning strongly torsion-free profinite groups [cf. [Mzk2], Definition 1.1, (iii)]. These observations grew out of e-mail correspondences between the author, Akio Tamagawa, and Marco Boggi, as well as oral discussions between the author and Akio Tamagawa. Definition 1. Let G be a profinite group. (i) We ...

متن کامل

Homological Realization of Prescribed Abelian Groups via K-theory

Using algebraic and topological K-theory together with complex C∗-algebras, we prove that every abelian group may be realized as the centre of a strongly torsion generated group whose integral homology is zero in dimension one and isomorphic to two arbitrarily prescribed abelian groups in dimensions two and three.

متن کامل

On Regularity of Acts

In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...

متن کامل

On special submodule of modules

‎Let $R$ be a domain with quotiont field $K$‎, ‎and‎ ‎let $N$ be a submodule of an $R$-module $M$‎. ‎We say that $N$ is‎ ‎powerful (strongly primary) if $x,yin K$ and‎ ‎$xyMsubseteq N$‎, ‎then $xin R$ or $yin R$ ($xMsubseteq N$‎ ‎or $y^nMsubseteq N$ for some $ngeq1$)‎. ‎We show that a submodule‎ ‎with either of these properties is comparable to every prime‎ ‎submodule of $M$‎, ‎also we show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000