Optimizing unsupervised classifications of remotely sensed imagery with a data-assisted labeling approach
نویسندگان
چکیده
The quality of remotely sensed land use and land cover (LULC) maps is affected by the accuracy of image data classifications. Various efforts have been made in advancing supervised or unsupervised classification methods to increase the repeatability and accuracy of LULC mapping. This study incorporates a data-assisted labeling approach (DALA) into the unsupervised classification of remotely sensed imagery. The DALA-unsupervised classification algorithm consists of three steps: (1) creation of N spectral-class maps using Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA); (2) development of LULC maps with assistance of reference data; and (3) accuracy assessments of all the LULC maps using independent reference data and selection of one LULC map with the highest accuracy. Classification experiments with a composite image of a Landsat Thematic Mapper (TM) image and an Enhanced Thematic Mapper Plus (ETM+) image suggest that DALA was effective in making unsupervised classification process more objective, automatic, and accurate. A comparison between the DALA-unsupervised classifications and some conventional classifications suggests that the DALA-unsupervised classification algorithm yielded better classification accuracies compared to these conventional approaches. Such a simple, effective approach has not been systematically examined before but has great potential for many applications in the geosciences. r 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملUsing Neural Networks for Clustering on RSI Data and Related Spatial Data
Clustering is unsupervised classification of patterns into groups. Neural networks are very useful tools for performing clustering. In this paper, we propose a new model for using artificial neural networks to perform clustering tasks on remotely sensed imagery. This model generates self-organizing maps (SOM) based on remotely sensed imagery and such related data as yield, nitrate, and moisture...
متن کاملRemote Sensing Analysis of Land Cover Change
In Australia, remotely sensed Landsat data is routinely used for mapping and monitoring changes in the extent of woody perennial vegetation. Time series remotely sensed satellite imagery and ground information is used to form multi-temporal classifications of presence/absence of woody cover. Two broad-scale operational land cover change and monitoring projects are based on a series of algorithm...
متن کاملA New GIS based Application of Sequential Technique to Prospect Karstic Groundwater using Remotely Sensed and Geoelectrical Methods in Karstified Tepal Area, Shahrood, Iran
In this research, recognition of karstic water-bearing zones using the management of exploration data in Kal-Qorno valley, situated in the Tepal area of Shahrood, has been considered. For this purpose, the sequential exploration method was conducted using geological evidences and applying remote sensing and geoelectrical resistivity methods in two major phases including the regional and local s...
متن کاملGeostatistical classi®cation for remote sensing: an introduction
Traditional spectral classi®cation of remotely sensed images applied on a pixel-by-pixel basis ignores the potentially useful spatial information between the values of proximate pixels. For some 30 years the spatial information inherent in remotely sensed images has been employed, albeit by a limited number of researchers, to enhance spectral classi®cation. This has been achieved primarily by ®...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Geosciences
دوره 34 شماره
صفحات -
تاریخ انتشار 2008