Explorer Investigating RNN - based speech enhancement methods for noise - robust Text - to - Speech

نویسندگان

  • Cassia Valentini-Botinhao
  • Xin Wang
  • Shinji Takaki
  • Junichi Yamagishi
چکیده

The quality of text-to-speech (TTS) voices built from noisy speech is compromised. Enhancing the speech data before training has been shown to improve quality but voices built with clean speech are still preferred. In this paper we investigate two different approaches for speech enhancement to train TTS systems. In both approaches we train a recursive neural network (RNN) to map acoustic features extracted from noisy speech to features describing clean speech. The enhanced data is then used to train the TTS acoustic model. In one approach we use the features conventionally employed to train TTS acoustic models, i.e Mel cepstral (MCEP) coefficients, aperiodicity values and fundamental frequency (F0). In the other approach, following conventional speech enhancement methods, we train an RNN using only the MCEP coefficients extracted from the magnitude spectrum. The enhanced MCEP features and the phase extracted from noisy speech are combined to reconstruct the waveform which is then used to extract acoustic features to train the TTS system. We show that the second approach results in larger MCEP distortion but smaller F0 errors. Subjective evaluation shows that synthetic voices trained with data enhanced with this method were rated higher and with similar to scores to voices trained with clean speech.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating RNN-based speech enhancement methods for noise-robust Text-to-Speech

The quality of text-to-speech (TTS) voices built from noisy speech is compromised. Enhancing the speech data before training has been shown to improve quality but voices built with clean speech are still preferred. In this paper we investigate two different approaches for speech enhancement to train TTS systems. In both approaches we train a recursive neural network (RNN) to map acoustic featur...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

A Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement

A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017