An Effective Evaluation Function for Ica to Separate Train Noise from Telluric Current Data
نویسندگان
چکیده
Irregular changes of electric currents called Seismic Electric Signals (SESs) are often observed in Telluric Current Data (TCD). Recently, detection of SESs in TCD has attracted notice for shortterm earthquake prediction. Since most of the TCD collected in Japan is affected by train noise, detecting SESs in TCD itself is an extremely arduous job. The goal of our research is automatic separation of train noise and SESs, which are considered to be independent signals, using Independent Component Analysis (ICA). In this paper, we propose an effective ICA evaluation function for train noise considering statistic analysis. We apply the evaluation function to TCD and analyze the results.
منابع مشابه
Separation of Train Noise and Seismic Electric Signals from Telluric Current Data by Ica
Recently, detection of seismic electric signals (SESs) in telluric current data (TCD) observed using the VAN method has attracted notice for short-term earthquake prediction. However, since most of the TCD collected in Japan is affected by train noise, detecting SESs in TCD itself is an extremely arduous job. The goal of this research is to derive a method for detecting SESs, which is difficult...
متن کاملروشی جدید برای عضویتدهی به دادهها و شناسایی نوفه و دادههای پرت با استفاده از ماشین بردار پشتیبان فازی
Support Vector Machine (SVM) is one of the important classification techniques, has been recently attracted by many of the researchers. However, there are some limitations for this approach. Determining the hyperplane that distinguishes classes with the maximum margin and calculating the position of each point (train data) in SVM linear classifier can be interpreted as computing a data membersh...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملFractured Reservoirs History Matching based on Proxy Model and Intelligent Optimization Algorithms
In this paper, a new robust approach based on Least Square Support Vector Machine (LSSVM) as a proxy model is used for an automatic fractured reservoir history matching. The proxy model is made to model the history match objective function (mismatch values) based on the history data of the field. This model is then used to minimize the objective function through Particle Swarm Optimization (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003