McCormick-Based Relaxations of Algorithms

نویسندگان

  • Alexander Mitsos
  • Benoît Chachuat
  • Paul I. Barton
چکیده

Theory and implementation for the global optimization of a wide class of algorithms is presented via convex/affine relaxations. The basis for the proposed relaxations is the systematic construction of subgradients for the convex relaxations of factorable functions by McCormick [Math. Prog., 10 (1976), pp. 147–175]. Similar to the convex relaxation, the subgradient propagation relies on the recursive application of a few rules, namely, the calculation of subgradients for addition, multiplication, and composition operations. Subgradients at interior points can be calculated for any factorable function for which a McCormick relaxation exists, provided that subgradients are known for the relaxations of the univariate intrinsic functions. For boundary points, additional assumptions are necessary. An automated implementation based on operator overloading is presented, and the calculation of bounds based on affine relaxation is demonstrated for illustrative examples. Two numerical examples for the global optimization of algorithms are presented. In both examples a parameter estimation problem with embedded differential equations is considered. The solution of the differential equations is approximated by algorithms with a fixed number of iterations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global optimization in reduced space

Optimization is a key activity in any engineering discipline. Global optimization methods, in particular, strive to solve nonconvex problems, which often arise in chemical engineering, and deterministic algorithms such as branch-and-bound provide a certificate of optimality for the identified solution. Unfortunately, the worst-case runtime of these algorithms is exponential in the problem dimen...

متن کامل

Convergence Analysis of Multivariate

The convergence rate is analyzed for McCormick relaxations of compositions of the form F ̋ f , where F is a multivariate function, as established by Tsoukalas and Mitsos (JOGO, 59:633-662, 2014). Convergence order in the Hausdorff metric and pointwise convergence order are analyzed. Similar to the convergence order propagation of McCormick univariate composition functions, Bompadre and Mitsos (...

متن کامل

Differentiable McCormick relaxations

McCormick’s classical relaxation technique constructs closed-form convex and concave relaxations of compositions of simple intrinsic functions. These relaxations have several properties which make them useful for lower bounding problems in global optimization: they can be evaluated automatically, accurately, and computationally inexpensively, and they converge rapidly to the relaxed function as...

متن کامل

Reverse propagation of McCormick relaxations

Constraint propagation techniques have heavily utilized interval arithmetic while the application of convex and concave relaxations has been mostly restricted to the domain of global optimization. Here, reverse McCormick propagation, a method to construct and improve McCormick relaxations using a directed acyclic graph representation of the constraints, is proposed. In particular, this allows t...

متن کامل

Multivariate McCormick relaxations

McCormick (Math Prog 10(1):147–175, 1976) provides the framework for convex/concave relaxations of factorable functions, via rules for the product of functions and compositions of the form F◦ f , where F is a univariate function. Herein, the composition theorem is generalized to allowmultivariate outer functions F , and theory for the propagation of subgradients is presented. The generalization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2009