Atomistic study of macroscopic analogs to short-chain molecules.
نویسندگان
چکیده
We use a bath of chaotic surface waves in water to mechanically and macroscopically mimic the thermal behavior of a short articulated chain with only nearest-neighbor interactions. The chaotic waves provide isotropic and random agitation to which a temperature can be ascribed, allowing the chain to passively explore its degrees of freedom in analogy to thermal motion. We track the chain in real time and infer end-to-end potentials using Boltzmann statistics. We extrapolate our results, by using Monte Carlo simulations of self-avoiding polymers, to lengths not accessible in our system. In the long-chain limit we demonstrate universal scaling of the statistical parameters of all chains in agreement with well-known predictions for self-avoiding walks. However, we find that the behavior of chains below a characteristic length scale fundamentally differs. We find that short chains have much greater compressional stiffness than would be expected. However, chains rapidly soften as length increases to meet with expected scalings.
منابع مشابه
The DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules
The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of th...
متن کاملStudy of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملReactivity and aromaticity of hexasiline derivatives Si6XH5 (X = H, F, Cl, Br, COOH, NO2, NH2, CH3 and tBu)
During recent years, the silicon organic-inorganic compounds play the key role in medicinal chemistry and pharmaceutical industry. This is because of their similar chemical properties with carbon compounds. The second reason is related to their easy transfer from the cell membranes. So, molecular simulation and study the properties of novel organosilicon compounds can be more important. From th...
متن کاملAtomistic simulation of the transition from atomistic to macroscopic cratering.
Using large-scale atomistic simulations, we show that the macroscopic cratering behavior emerges for projectile impacts on Au at projectile sizes between 1000 and 10000 Au atoms at impact velocities comparable to typical meteoroid velocities. In this size regime, we detect a compression of material in Au nanoparticle impacts similar to that observed for hypervelocity macroscopic impacts. The si...
متن کاملDirect Mixing of Atomistic Solutes and Coarse-Grained Water.
We present a new dual-resolution approach for coupling atomistic and coarse-grained models in molecular dynamics simulations of hydrated systems. In particular, a coarse-grained point dipolar water model is used to solvate molecules represented with standard all-atom force fields. A unique characteristic of our methodology is that the mixing of resolutions is direct, meaning that no additional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 2 شماره
صفحات -
تاریخ انتشار 2015