FUNCTIONAL CALCULUS AND SQUARE FUNCTIONS ON NONCOMMUTATIVE L p - SPACES

نویسنده

  • QUANHUA XU
چکیده

In this work we investigate semigroups of operators acting on noncommutative L-spaces. We introduce noncommutative square functions and their connection to sectoriality, variants of Rademacher sectoriality, and H∞ functional calculus. We discuss several examples of noncommutative diffusion semigroups. This includes Schur multipliers, q-Ornstein-Uhlenbeck semigroups, and the noncommutative Poisson semigroup on free groups. 2000 Mathematics Subject Classification : Primary 47A60; Secondary 46L55, 46L69.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kato’s Square Root Problem in Banach Spaces

Abstract. Let L be an elliptic differential operator with bounded measurable coefficients, acting in Bochner spaces Lp(Rn;X) of X-valued functions on Rn. We characterize Kato’s square root estimates ‖ √ Lu‖p h ‖∇u‖p and the H-functional calculus of L in terms of R-boundedness properties of the resolvent of L, when X is a Banach function lattice with the UMD property, or a noncommutative Lp spac...

متن کامل

Conical Square Function Estimates in Umd Banach Spaces and Applications to H∞-functional Calculi

We study conical square function estimates for Banach-valued functions, and introduce a vector-valued analogue of the Coifman–Meyer–Stein tent spaces. Following recent work of Auscher–MIntosh–Russ, the tent spaces in turn are used to construct a scale of vector-valued Hardy spaces associated with a given bisectorial operator A with certain off-diagonal bounds, such that A always has a bounded H...

متن کامل

Paley-Littlewood decomposition for sectorial operators and interpolation spaces

We prove Paley-Littlewood decompositions for the scales of fractional powers of 0-sectorial operators A on a Banach space which correspond to Triebel-Lizorkin spaces and the scale of Besov spaces if A is the classical Laplace operator on L(R). We use the H∞calculus, spectral multiplier theorems and generalized square functions on Banach spaces and apply our results to Laplace-type operators on ...

متن کامل

Notes on Topology for Functional Analysis

What is it that one analyzes in functional analysis? Very often the analysis involves functions defined on a domain in an infinite dimensional vector space with values in the field, R or C, over which the vectors space is defined. Since the elements of these infinite dimensional vector spaces are often functions themselves; e.g., the vectors space may consist of square integrable functions on [...

متن کامل

2 1 Fe b 20 06 On the hermiticity of q - differential operators and forms on the quantum Euclidean spaces R Nq

We show that the complicated ⋆-structure characterizing for positive q the Uqso(N)-covariant differential calculus on the non-commutative manifold Rq boils down to similarity transformations involving the ribbon element of a central extension of Uqso(N) and its formal square root ṽ. Subspaces of the spaces of functions and of p-forms on Rq are made into Hilbert spaces by introducing non-convent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006