Diffusion of chemically reacting fluids through nonlinear elastic solids: mixture model and stabilized methods
نویسنده
چکیده
This paper presents a stabilized mixed finite element method for advection-diffusion-reaction phenomena that involve an anisotropic viscous fluid diffusing and chemically reacting with an anisotropic elastic solid. The reactive fluid–solid mixture theory of Hall and Rajagopal (Diffusion of a fluid through an anisotropically chemically reacting thermoelastic body within the context of mixture theory. Math Mech Solid 2012; 17: 131–164) is employed wherein energy and entropy production relations are captured via an equation describing the Lagrange multiplier that results from imposing the constraint of maximum rate of entropy production. The primary partial differential equations are thus reduced to the balance of mass and balance of linear momentum equations for the fluid and the solid, together with an equation for the Lagrange multiplier. Present implementation considers a simplification of the full system of governing equations in the context of isothermal problems, although anisothermal studies are being investigated. The method is applied to problems involving Fickian diffusion, oxidation of PMR-15 polyimide resin, and slurry infiltration, within a one-dimensional finite element context. Results of the oxidation modeling of Tandon et al. (Modeling of oxidative development in PMR-15 resin. Polym Degrad Stab 2006; 91: 1861–1869) are recovered by employing the reaction kinetics model and properties assumed there; the only additional assumed properties are two constants describing coupled chemomechanical and purely chemical dissipation, and standard values for viscosity of air and PMR-15 stiffness properties. The present model provides the individual constituent kinematic and kinetic behaviors, thus adding rich detail to the interpretation of the process in comparison to the original treatment. The last problem considered is slurry infiltration that demonstrates the applicability of the model to account for the imposed mass deposition process and consequent effects on the kinematic and kinetic behaviors of the constituents.
منابع مشابه
Three-dimensional chemically reacting radiative MHD flow of nanofluid over a bidirectional stretching surface
This study deals with the three-dimensional flow of a chemically reacting magnetohydrodynamic Sisko fluid over a bidirectional stretching surface filled with the ferrous nanoparticles in the presence of non-uniform heat source/sink, nonlinear thermal radiation, and suction/injection. After applying the self-suitable similarity transforms, the nonlinear ordinary differential equations are solved...
متن کاملEffects of Thermal Diffusion and Radiation on Magnetohydrodynamic (MHD) Chemically Reacting Fluid Flow Past a Vertical Plate in a Slip Flow Regime
An analysis has been conceded to study the effects of Soret and thermal radiation effects on the magnetohydrodynamic convective flow of a viscous, incompressible, electrically conducting fluid with heat and mass transfer over a plate with time-dependent suction velocity in a slip flow regime in the presence of first-order chemical reaction. The slip conditions at the boundaries for the governin...
متن کاملWave Propagation in a Layer of Binary Mixture of Elastic Solids
This paper concentrates on the propagation of waves in a layer of binary mixture of elastic solids subjected to stress free boundaries. Secular equations for the layer corresponding to symmetric and antisymmetric wave modes are derived in completely separate terms. The amplitudes of displacement components and specific loss for both symmetric and antisymmetric modes are obtained. The effect of ...
متن کاملWave Propagation in Mixture of Generalized Thermoelastic Solids Half-Space
This paper concentrates on the reflection of plane waves in the mixture of generalized thermo elastic solid half-space. There exists quasi dilatational waves i.e. qP1, qP2, qT and two rotational waves S1, S2 in a two dimensional model of the solid. The boundary conditions are solved to obtain a system of five non-homogeneous equations for amplitude ratios. These amplitude ratios are found to de...
متن کاملOn a steady flow of multicomponent, compressible, chemically reacting gas
Abstract: We consider the system of equations governing a steady flow of polyatomic isothermal reactive gas mixture. The model covers situation when the pressure depends on species concentration and when the diffusion coefficients for each of the species are density-dependent. It is shown that this problem admits weak solution provided the adiabatic exponent for the mixture γ is grater then 7 3 .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014