Determinants of voltage-dependent inactivation affect Mibefradil block of calcium channels.

نویسندگان

  • C Jiménez
  • E Bourinet
  • V Leuranguer
  • S Richard
  • T P Snutch
  • J Nargeot
چکیده

The voltage gated calcium channel family is a major target for a range of therapeutic drugs. Mibefradil (Ro 40-5967) belongs to a new chemical class of these molecules which differs from other Ca2+ antagonists by its ability to potently block T-type Ca2+ channels. However, this molecule has also been shown to inhibit other Ca2+ channel subtypes. To further analyze the mechanism governing the Ca2+ channel-Mibefradil interaction, we examined the effect of Mibefradil on various recombinant Ca2+ channels expressed in mammalian cells from their cloned cDNAs, using Ca2+ as the permeant ion at physiological concentration. Expression of alpha1A, alpha1C, and alpha1E in tsA 201 cells resulted in Ca2+ currents with functional characteristics closely related to those of their native counterparts. Mibefradil blocked alpha1A and alpha1E with a Kd comparable to that reported for T-type channels, but had a lower affinity (approximately 30-fold) for alpha1C. For each channel, inhibition by Mibefradil was consistent with high-affinity binding to the inactivated state. Modulation of the voltage-dependent inactivation properties by the nature of the coexpressed beta subunit or the alpha1 splice variant altered block at the Mibefradil receptor site. Therefore, we conclude that the tissue and sub-cellular localization of calcium channel subunits as well as their specific associations are essential parameters to understand the in vivo effects of Mibefradil.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inner pore residue (Asn406) in the Nav1.5 channel controls slow inactivation and enhances mibefradil block to T-type Ca2+ channel levels.

Mibefradil is a tetralol derivative once marketed to treat hyper-tension. Its primary target is the T-type Ca(2+) channel (IC(50), approximately 0.1-0.2 microM), but it also blocks Na(+),K(+),Cl(-), and other Ca(2+) channels at higher concentrations. We have recently reported state-dependent mibefradil block of Na(+) channels in which apparent affinity was enhanced when channels were recruited ...

متن کامل

Effect of Mibefradil on Voltage-Dependent Gating and Kinetics of T-Type Ca Channels in Cortisol-Secreting Cells

We have studied the effect of the Ca antagonist mibefradil on low voltage-activated T-type Ca channels in whole-cell patch clamp recordings from bovine adrenal zona fasciculata (AZF) cells. AZF cells are distinctive in expressing only T-type Ca channels, allowing the mechanism of pharmacological agents to be explored without interference from other Ca channels. The inhibition of T-type Ca chann...

متن کامل

NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels.

Mibefradil is a Ca2+ channel antagonist that inhibits both T-type and high-voltage-activated Ca2+ channels. We previously showed that block of high-voltage-activated channels by mibefradil occurs through the production of an active metabolite by intracellular hydrolysis. In the present study, we modified the structure of mibefradil to develop a nonhydrolyzable analog, (1S, 2S)-2-(2-(N-[(3-benzi...

متن کامل

Single-channel pharmacology of mibefradil in human native T-type and recombinant Ca(v)3.2 calcium channels.

To study the molecular pharmacology of low-voltage-activated calcium channels in biophysical detail, human medullary thyroid carcinoma (hMTC) cells were investigated using the single-channel technique. These cells had been reported to express T-type whole-cell currents and a Ca(v)3.2 (or alpha 1H) channel subunit. We observed two types of single-channel activity that were easily distinguished b...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuropharmacology

دوره 39 1  شماره 

صفحات  -

تاریخ انتشار 2000