The Na+ binding site of thrombin.

نویسندگان

  • E Di Cera
  • E R Guinto
  • A Vindigni
  • Q D Dang
  • Y M Ayala
  • M Wuyi
  • A Tulinsky
چکیده

Thrombin is an allosteric serine protease existing in two forms, slow and fast, targeted toward anticoagulant and procoagulant activities. The slow --> fast transition is induced by Na+ binding to a site contained within a cylindrical cavity formed by three antiparallel beta-strands of the B-chain (Met180-Tyr184a, Lys224-Tyr228, and Val213-Gly219) diagonally crossed by the Glu188-Glu192 strand. The site is shaped further by the loop connecting the last two beta-strands and is located more than 15 A away from the catalytic triad. The cavity traverses through thrombin from the active site to the opposite surface and contains Asp189 of the primary specificity site near its midpoint. The bound Na+ is coordinated octahedrally by the carbonyl oxygen atoms of Tyr184a, Arg221a, and Lys224, and by three highly conserved water molecules in the D-Phe-Pro-Arg chloromethylketone thrombin. The sequence in the Na+ binding loop is highly conserved in thrombin from 11 different species and is homologous to that found in other serine proteases involved in blood coagulation. Mutation of two Asp residues flanking Arg221a (D221A/D222K) almost abolishes the allosteric properties of thrombin and shows that the Na+ binding loop is also involved in direct recognition of protein C and antithrombin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of wild-type human thrombin in the Na+-free state.

Regulation of thrombin activity is critical for haemostasis and the prevention of thrombosis. Thrombin has several procoagulant substrates, including fibrinogen and platelet receptors, and essential cofactors for stimulating its own formation. However, thrombin is also capable of serving an anticoagulant function by activating protein C. The specificity of thrombin is primarily regulated by bin...

متن کامل

Molecular dissection of Na+ binding to thrombin.

Na(+) binding near the primary specificity pocket of thrombin promotes the procoagulant, prothrombotic, and signaling functions of the enzyme. The effect is mediated allosterically by a communication between the Na(+) site and regions involved in substrate recognition. Using a panel of 78 Ala mutants of thrombin, we have mapped the allosteric core of residues that are energetically linked to Na...

متن کامل

Rigidification of the autolysis loop enhances Na(+) binding to thrombin.

Binding of Na(+) to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na(+) is weak due to large heat capacity and enthalpy changes associated with binding, and the K(d)=80 mM ensures only 64% saturation of the site at the conce...

متن کامل

Rapid kinetics of Na+ binding to thrombin.

The kinetic mechanism of Na(+) binding to thrombin was resolved by stopped-flow measurements of intrinsic fluorescence. Na(+) binds to thrombin in a two-step mechanism with a rapid phase occurring within the dead time of the spectrometer (<0.5 ms) followed by a single-exponential slow phase whose k(obs) decreases hyperbolically with increasing [Na(+)]. The rapid phase is due to Na(+) binding to...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Structural requirements for the activation of human factor VIII by thrombin

The coagulation factors V (FV) and VIII (FVIII) are important at sites of vascular injury for the amplification of the clotting cascade. Natural variants of these factors frequently lead to severe bleeding disorders. To understand the mechanisms of activation of FVIII by thrombin, we used a bank of mutant thrombins to define residues important for its activation. From the initial screening of 5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 270 38  شماره 

صفحات  -

تاریخ انتشار 1995