Rapid workflow of mMR PET list-mode data processing using CUDA.
نویسندگان
چکیده
University College London, Institute of Nuclear Medicine, UK The purpose of this work is to provide a software solution which would enable very fast list-mode data processing offered by the massively parallel graphics processor units (GPU) while dealing efficiently with the common bottleneck of data transfers between hard disk storage, host (CPU) memory and device (GPU) memory. This software is dedicated to the PETLINKTM list-mode data format which is used by the Siemens’ hybrid Biograph Molecular MR (mMR) scanner. This software is developed as part of our platform for mMR 3D and 4D PET image reconstruction and will be freely accessible to the community. The aim is to perform real time processing (i.e. without perceivable delay) of the list-mode data during data transfers from hard disk to the CPU memory. The output of the processing includes: (1) The count-rate data (head curve: prompts, randoms and singles per second). (2) Plot of the variation of the centre of mass due to kinetics and motion (crude motion detection and quantification). (3) Projection movies (sagittal and coronal) for visual inspection for motion and data quality. (4) Crystal fan-sums for any time frame (used for randoms noise reduction). (5) Singles rate for each detector bucket (used for dead-time correction during normalisation). (6) Static and dynamic sinograms of span-1 and span-11. This workflow enables listmode data processing synchronously with data transfer from disk to CPU memory. It opens a way for fast creation of multiple bootstrap realisations and multiple image reconstructions for a single dataset providing valuable insight into distributions of any statistic used in the development of robust image bio-markers. Also, the proposed workflow is advantageous for list-mode image reconstruction.
منابع مشابه
Fully 3-D List-mode Positron Emission Tomography Image Reconstruction on a Multi-GPU Cluster
List-mode processing is an efficient way of dealing with the sparse nature of PET data sets, and is the processing method of choice for time-of-flight (ToF) PET. We present a novel method of computing line projection operations required for list-mode ordered subsets expectation maximization (OSEM) for fully 3-D PET image reconstruction on a graphics processing unit (GPU) using the compute unifi...
متن کاملFully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.
PURPOSE List-mode processing is an efficient way of dealing with the sparse nature of positron emission tomography (PET) data sets and is the processing method of choice for time-of-flight (ToF) PET image reconstruction. However, the massive amount of computation involved in forward projection and backprojection limits the application of list-mode reconstruction in practice, and makes it challe...
متن کاملOptimized list-mode acquisition and data processing procedures for ACS2 based PET systems.
PET systems using the acquisition control system version 2 (ACS2), e.g. the ECAT Exact HR PET scanner series, offer a rather restricted list-mode functionality. For instance, typical transfers of acquisition data consume a considerable amount of time. This represents a severe obstacle to the utilization of potential advantages of list-mode acquisition. In our study, we have developed hardware a...
متن کاملValidation of a simultaneous PET/MR system model for PET simulation using GATE
LaTIM UMR 1101, Brest, France Simultaneous PET/MR acquisition shows promise in a range of applications. Simulation using GATE is an essential tool that allows obtaining the ground truth for such acquisitions and therefore helping in the development and the validation of innovative processing methods such as PET image reconstruction, attenuation correction and motion correction. The purpose of t...
متن کاملNon rigid respiratory motion correction in whole body PET/MR imaging
INSERM UMR1101, LaTIM, Brest, France Respiratory motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies include the use of respiratory synchronized gated frames which lead to low signal to noise ratio (SNR) given that each frame contains only part of the count available throughout an average PET acquisition. In this work, 4D MRI extracted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EJNMMI physics
دوره 2 Suppl 1 شماره
صفحات -
تاریخ انتشار 2015