Optical detection of individual ultra-short carbon nanotubes enables their length characterization down to 10 nm

نویسندگان

  • Zhenghong Gao
  • Laura Oudjedi
  • Romain Faes
  • Fabien Moroté
  • Christèle Jaillet
  • Philippe Poulin
  • Brahim Lounis
  • Laurent Cognet
چکیده

Ultrashort single-walled carbon nanotubes, i.e. with length below ~30 nm, display length-dependent physical, chemical and biological properties that are attractive for the development of novel nanodevices and nanomaterials. Whether fundamental or applicative, such developments require that ultrashort nanotube lengths can be routinely and reliably characterized with high statistical data for high-quality sample production. However, no methods currently fulfill these requirements. Here, we demonstrate that photothermal microscopy achieves fast and reliable optical single nanotube analysis down to ~10 nm lengths. Compared to atomic force microscopy, this method provides ultrashort nanotubes length distribution with high statistics, and neither requires specific sample preparation nor tip-dependent image analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preferential growth of short aligned, metallic-rich single-walled carbon nanotubes from perpendicular layered double hydroxide film.

Direct bulk growth of single-walled carbon nanotubes (SWCNTs) with required properties, such as diameter, length, and chirality, is the first step to realize their advanced applications in electrical and optical devices, transparent conductive films, and high-performance field-effect transistors. Preferential growth of short aligned, metallic-rich SWCNTs is a great challenge to the carbon nanot...

متن کامل

High-field quasiballistic transport in short carbon nanotubes.

Single walled carbon nanotubes with Pd Ohmic contacts and lengths ranging from several microns down to 10 nm are investigated by electron transport experiments and theory. The mean-free path (MFP) for acoustic phonon scattering is estimated to be l(ap) approximately 300 nm, and that for optical phonon scattering is l(op) approximately 15 nm. Transport through very short (approximately 10 nm) na...

متن کامل

Optical Spectroscopy of Individual Single-walled Carbon Nanotubes 18:30 O&s 1 19:00 O&s 2 Growth and Optical Properties of Small-bundled Vertically Aligned Single-walled Carbon

In this talk, we describe recent experimental investigations of optical spectroscopy at the level of an individual nanotube. The principal experimental method has been Rayleigh scattering (elastic scattering) spectroscopy, an approach suitable for probing both semiconducting and metallic nanotubes. Recent measurements include a direct determination of the correlation between optical spectra and...

متن کامل

High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices.

Single-walled carbon nanotubes are uniquely identified by a pair of chirality indices (n,m), which dictate the physical structures and electronic properties of each species. Carbon nanotube research is currently facing two outstanding challenges: achieving chirality-controlled growth and understanding chirality-dependent device physics. Addressing these challenges requires, respectively, high-t...

متن کامل

Non-destructive characterization of structural hierarchy within aligned carbon nanotube assemblies.

Understanding and controlling the hierarchical self-assembly of carbon nanotubes (CNTs) is vital for designing materials such as transparent conductors, chemical sensors, high-performance composites, and microelectronic interconnects. In particular, many applications require high-density CNT assemblies that cannot currently be made directly by low-density CNT growth, and therefore require post-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015