Image Segmentation Using Unsupervised Techniques
نویسندگان
چکیده
Unsupervised Techniques of segmentation are simple and the segmented output using these techniques gives the best results. This paper presents an automatic segmentation method based on unsupervised segmentation done on Ultrasound (US) images received from the radiologist. US imaging is widely used in clinical diagnosis and image-guided interventions, but suffers from poor quality. One of the most important problems in image processing and analysis is segmentation. US image is difficult to segment due to low contrast and strong speckle noise. Here we present three unsupervised techniques, namely thresholding, K-means clustering and expectation maximization and compare their results. The uniqueness of this paper is that EM technique is used for texture featured image which gives far better results of segmentation. KEYWORDS— medical ultrasound images, segmentation, thresholding, k-means clustering, expectation maximization.
منابع مشابه
Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Learning for Object Recognition
This report consists of a literature review of papers dealing with object recognition using unsupervised learning techniques. Five papers that brought important contributions to the field are summarized, analyzed and compared. It was found that unsupervised object recognition was considered first as an image segmentation problem, but new unsupervised object learning techniques have been develop...
متن کاملAn unsupervised strategy for biomedical image segmentation
Many segmentation techniques have been published, and some of them have been widely used in different application problems. Most of these segmentation techniques have been motivated by specific application purposes. Unsupervised methods, which do not assume any prior scene knowledge can be learned to help the segmentation process, and are obviously more challenging than the supervised ones. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015