Enumeration of Graded ( 3 + 1 ) - Avoiding Posets ( extended abstract )
نویسندگان
چکیده
The notion of (3+1)-avoidance appears in many places in enumerative combinatorics, but the natural goal of enumerating all (3+1)-avoiding posets remains open. In this paper, we enumerate graded (3+1)-avoiding posets. Our proof consists of a number of structural theorems followed by some generating function magic. Résumé. L’idée de l’évitement de (3+1) apparaı̂t dans beaucoup d’endroits dans le combinatoire énumérative, mais l’objectif naturel de le dénombrement des tous les ordres qui évitent (3 + 1) demure ouvert. Dans cet article, nous énumérons les ordres étagés qui évitent (3 + 1). Notre preuve est constitué de quelques théorèmes de structure, et après un peu de la magie des fonctions génératrices.
منابع مشابه
Enumeration of Graded ( 3 + 1 ) - Avoiding
The notion of (3+1)-avoidance appears in many places in enumerative combinatorics, but the natural goal of enumerating all (3+1)-avoiding posets remains open. In this paper, we enumerate graded (3+1)-avoiding posets. Our proof consists of a number of structural theorems followed by some generating function magic. Résumé. L’idée de l’évitement de (3+1) apparaı̂t dans beaucoup d’endroits dans le c...
متن کاملStructure and enumeration of ( 3 + 1 ) - free posets ( extended
A poset is (3 + 1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets are the subject of the (3 + 1)-free conjecture of Stanley and Stembridge. Recently, Lewis and Zhang have enumerated graded (3+1)-free posets, but until now the general enumeration problem has remained open. We enumerate all (3 + 1)-free posets by giving a decomposit...
متن کاملStructure and Enumeration of (3 + 1)-free Posets
A poset is (3 + 1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets play a central role in the (3 + 1)-free conjecture of Stanley and Stembridge. Lewis and Zhang have enumerated (3+1)-free posets in the graded case by decomposing them into bipartite graphs, but until now the general enumeration problem has remained open. We give a f...
متن کاملNoncommutative Enumeration in Graded Posets
We define a noncommutative algebra of flag-enumeration functionals on graded posets and show it to be isomorphic to the free associative algebra on countably many generators. Restricted to Eulerian posets, this ring has a particularly appealing presentation with kernel generated by Euler relations. A consequence is that even on Eulerian posets, the algebra is free, with generators corresponding...
متن کاملEuler Enumeration and Beyond
This paper surveys recent results for flag enumeration of polytopes, Bruhat graphs, balanced digraphs, Whitney stratified spaces and quasi-graded posets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012