Short photoperiods attenuate central responses to an inflammogen.

نویسندگان

  • Laura K Fonken
  • Tracy A Bedrosian
  • Heather D Michaels
  • Zachary M Weil
  • Randy J Nelson
چکیده

In most parts of the world, environmental conditions vary in a predictable seasonal manner. Thus, seasonal variation in reproductive timing and immune function has emerged in some species to cope with disparate seasonal demands. During the long days of spring and summer when food availability is high and thermoregulatory demands low, Siberian hamsters invest in reproduction, whereas during the harsh short days of winter hamsters divert energy away from reproductive activities and modify immune capabilities. Many seasonal adaptations can be recapitulated in a laboratory setting by adjusting day length (photoperiod). Early-life photoperiods are important sources of seasonal information and can establish an individual's developmental trajectory. Siberian hamsters housed under short days (SD; 8 h light/day) recover more rapidly than long-day (LD; 16 h light/day) hamsters from immune activation with lipopolysaccharide (LPS). SD hamsters attenuate fever response, reduce cytokine production, and abrogate behavioral responses following LPS injection. The mechanism by which SD Siberian hamsters attenuate febrile response remains unspecified. It is possible that periphery-to-brain communication of inflammatory signals is altered by exposure to photoperiod. Rather than testing photoperiod effects on each of the multiple routes by which immunological cues are communicated to the CNS, we administered LPS intracerebroventricularly (i.c.v.) following adolescent exposure to either 6 weeks of SD or LD. Injection of LPS i.c.v. led to a similar immune reaction in SD hamsters as previously reported with intraperitoneal injection. Short days attenuated the response to LPS with diminished fever spike and duration, as well as decreased locomotor inactivity. Furthermore, only LD hamsters demonstrated anhedonic-like behavior following LPS injection as evaluated by decreased preference for a milk solution. These results suggest that photoperiodic differences in response to infection are due in part to changes in central immune activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurophysiological responses to melatonin in the SCN of short-day sensitive and refractory hamsters.

The pineal hormone melatonin plays a central role in the regulation of seasonal reproductive cycles in mammals and several studies have implicated the suprachiasmatic nucleus (SCN) as a target on which melatonin acts. The Syrian hamster is a long-day breeder which exhibits gonadal regression when housed in short (less than 12.5 h) daily photoperiods or injected daily with melatonin in long phot...

متن کامل

Effects of photoperiod history on immune responses to intermediate day lengths in Siberian hamsters (Phodopus sungorus).

Seasonal changes in day length enhance or suppress immune function in individuals of several mammalian species. Siberian hamsters (Phodopus sungorus) are long-day breeders that adjust reproductive physiology and behavior, body mass, and immune function following exposure to short photoperiods. Photoperiods of intermediate-duration, encountered in nature by juvenile hamsters born in early-spring...

متن کامل

Dormancy Interferes with Flowering in Perennial Plants with Short Day Regulation of Both Processes: A Mini-Review

In many perennial woody plants growing in the temperate and cold regions, regulation of seasonal growth cessation and floral initiation are closely integrated, both taking place in photoperiods shorter than a critical length. In the temperate shrub black currant (Ribes nigrum L.), the two processes proceed harmoniously in parallel under naturally decreasing autumn photoperiods, whereas an abrup...

متن کامل

Diatom growth responses to photoperiod and light are predictable from diel reductant generation

Light drives phytoplankton productivity, so phytoplankton must exploit variable intensities and durations of light exposure, depending upon season, latitude, and depth. We analyzed the growth, photophysiology and composition of small, Thalassiosira pseudonana, and large, Thalassiosira punctigera, centric diatoms from temperate, coastal marine habitats, responding to a matrix of photoperiods and...

متن کامل

Early life experiences affect adult delayed-type hypersensitivity in short and long photoperiods.

Environmental experiences during development provide animals with important information about future conditions. Siberian hamsters are photoperiodic rodents that dramatically adjust their physiology and behavior to adapt to seasonal changes. For example, during short winter-like days, hamsters enhance some components of immune function putatively to cope with increasing environmental challenges...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain, behavior, and immunity

دوره 26 4  شماره 

صفحات  -

تاریخ انتشار 2012