Fast Sweeping Methods for Eikonal Equations on Triangular Meshes
نویسندگان
چکیده
The original fast sweeping method, which is an efficient iterative method for stationary Hamilton-Jacobi equations, relies on natural ordering provided by a rectangular mesh. We propose novel ordering strategies so that the fast sweeping method can be extended efficiently and easily to any unstructured mesh. To that end we introduce multiple reference points and order all the nodes according to their lp distances to those reference points. We show that these orderings satisfy the two most important properties underlying the fast sweeping method: (1) these orderings can cover all directions of information propagation efficiently; (2) any characteristics can be decomposed into a finite number of pieces and each piece can be covered by one of the orderings. We prove that the new algorithm converges in a finite number of iterations independent of mesh size. The computational complexity of the new algorithm is nearly optimal in the sense that the total computational cost consists of O(M) flops for iteration steps and O(MlogM) flops for sorting at the predetermined initialization step which can be efficiently optimized by adopting a linear time sorting method, where M is the total number of mesh points. We show extensive numerical examples to demonstrate the accuracy and efficiency of the new algorithm.
منابع مشابه
Uniformly Accurate Discontinuous Galerkin Fast Sweeping Methods for Eikonal Equations
In [F. Li, C.-W. Shu, Y.-T. Zhang, H. Zhao, Journal of Computational Physics 227 (2008) 81918208], we developed a fast sweeping method based on a hybrid local solver which is a combination of a discontinuous Galerkin (DG) finite element solver and a first order finite difference solver for Eikonal equations. The method has second order accuracy in the L norm and a very fast convergence speed, b...
متن کاملA Third Order Fast Sweeping Method with Linear Computational Complexity for Eikonal Equations
Fast sweeping methods are a class of efficient iterative methods for solving steady state hyperbolic PDEs. They utilize the Gauss-Seidel iterations and alternating sweeping strategy to cover a family of characteristics of the hyperbolic PDEs in a certain direction simultaneously in each sweeping order. The first order fast sweeping method for solving Eikonal equations (Zhao in Math Comput 74:60...
متن کاملHigh-Order Factorization Based High-Order Hybrid Fast Sweeping Methods for Point-Source Eikonal Equations
The solution for the eikonal equation with a point-source condition has an upwind singularity at the source point as the eikonal solution behaves like a distance function at and near the source. As such, the eikonal function is not differentiable at the source so that all formally high-order numerical schemes for the eikonal equation yield first-order convergence and relatively large errors. Th...
متن کاملA second order discontinuous Galerkin fast sweeping method for Eikonal equations
In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for directly solving ...
متن کاملA fast sweeping method for Eikonal equations
In this paper a fast sweeping method for computing the numerical solution of Eikonal equations on a rectangular grid is presented. The method is an iterative method which uses upwind difference for discretization and uses Gauss-Seidel iterations with alternating sweeping ordering to solve the discretized system. The crucial idea is that each sweeping ordering follows a family of characteristics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 45 شماره
صفحات -
تاریخ انتشار 2007