Entropic proximal decomposition methods for convex programs and variational inequalities
نویسندگان
چکیده
We consider convex optimization and variational inequality problems with a given separable structure. We propose a new decomposition method for these problems which combines the recent logarithmicquadratic proximal theory introduced by the authors with a decomposition method given by Chen-Teboulle for convex problems with particular structure. The resulting method allows to produce for the first time provably convergent decomposition schemes based on C∞ Lagrangians for solving convex structured problems. Under the only assumption that the primal-dual problems have nonempty solution sets, global convergence of the primal-dual sequences produced by the algorithm is established.
منابع مشابه
Decomposition Techniques for Bilinear Saddle Point Problems and Variational Inequalities with Affine Monotone Operators
The majority of First Order methods for large-scale convex-concave saddle point problems and variational inequalities with monotone operators are proximal algorithms which at every iteration need to minimize over problem’s domain X the sum of a linear form and a strongly convex function. To make such an algorithm practical, X should be proximal-friendly – admit a strongly convex function with e...
متن کاملAn inexact proximal algorithm for variational inequalities
This paper presents a new inexact proximal method for solving monotone variational inequality problems with a given separable structure. The resulting method combines the recent proximal distances theory introduced by Auslender and Teboulle (2006) with a decomposition method given by Chen and Teboulle that was proposed to solve convex optimization problems. This method extends and generalizes p...
متن کاملA class of decomposition methods for convex optimization and monotone variational inclusions via the hybrid inexact proximal point framework
We show that the decomposition method for convex programming proposed by Chen and Teboulle can be regarded as a special case in the hybrid inexact proximal point framework. We further demonstrate that the more general decomposition algorithms for variational inequalities introduced by Tseng are also either a special case in this framework or are very closely related to it. This analysis provide...
متن کاملInterior Proximal Method for Variational Inequalities on Non-polyhedral Sets
Interior proximal methods for variational inequalities are, in fact, designed to handle problems on polyhedral convex sets or balls, only. Using a slightly modified concept of Bregman functions, we suggest an interior proximal method for solving variational inequalities (with maximal monotone operators) on convex, in general non-polyhedral sets, including in particular the case in which the set...
متن کاملGeneralized Projection Method for Non-lipschitz Multivalued Monotone Variational Inequalities
We generalize the projection method for solving strongly monotone multivalued variational inequalities when the cost operator is not necessarily Lipschitz. At each iteration at most one projection onto the constrained set is needed. When the convex constrained set is not polyhedral, we embed the proposed method in a polyhedral outer approximation procedure. This allows us to obtain the projecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 91 شماره
صفحات -
تاریخ انتشار 2001