Optimal transport and Rényi informational divergence
نویسندگان
چکیده
Transport-entropy inequalities are considered in terms of Rényi informational divergence.
منابع مشابه
Multiplication Free Holographic Coding
An empirical informational divergence (relative entropy) between two individual sequences has been introduced in [1]. It has been demonstrated that if the two sequences are independent realizations of two finite-order, finite alphabet, stationary Markov processes, the proposed empirical divergence measure (ZMM), converges to the relative entropy almost surely. This leads to a realization of an ...
متن کاملImage Registration and Segmentation by Maximizing the Jensen-Rényi Divergence
Information theoretic measures provide quantitative entropic divergences between two probability distributions or data sets. In this paper, we analyze the theoretical properties of the Jensen-Rényi divergence which is defined between any arbitrary number of probability distributions. Using the theory of majorization, we derive its maximum value, and also some performance upper bounds in terms o...
متن کاملEstimation of Rényi Information Divergence via Pruned Minimal Spanning Trees
In this paper we develop robust estimators of the Rényi information divergence (I-divergence) given a reference distribution and a random sample from an unknown distribution. Estimation is performed by constructing a minimal spanning tree (MST) passing through the random sample points and applying a change of measure which flattens the reference distribution. In a mixture model where the refere...
متن کاملα-z-Rényi relative entropies
We consider a two-parameter family of Rényi relative entropies Dα,z(ρ||σ) that are quantum generalisations of the classical Rényi divergence Dα(p||q). This family includes many known relative entropies (or divergences) such as the quantum relative entropy, the recently defined quantum Rényi divergences, as well as the quantum Rényi relative entropies. All its members satisfy the quantum general...
متن کاملIterative Bregman Projections for Regularized Transportation Problems
This article details a general numerical framework to approximate solutions to linear programs related to optimal transport. The general idea is to introduce an entropic regularization of the initial linear program. This regularized problem corresponds to a Kullback-Leibler Bregman divergence projection of a vector (representing some initial joint distribution) on the polytope of constraints. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015