Robust Human Detection Using Multiple Scale of Cell Based Histogram of Oriented Gradients and AdaBoost Learning
نویسندگان
چکیده
Human detection is an important task in many applications such as intelligent transport systems, surveillance systems, automatic human assistance systems, image retrieval, and so on. This paper proposes a multiple scale of cell based Histogram of Oriented Gradients (HOG) features description for human detection system. Using these proposed feature descriptors, a robust system is developed according to decision tree structure of boosting algorithm. In this system, the integral image based method is utilized to compute feature descriptors rapidly, and then cascade classifiers are taken into account to reduce computational cost. The experiments were performed on INRIA’s database and our own database, which includes samples in several different sizes. The experiment results showed that our proposed method produce high performance with lower false positive and higher recall rate than the standard HOG features description. This method is also efficient with different resolution and gesture poses under a variety of backgrounds, lighting, as well as individual human in crowds, and partial occlusions.
منابع مشابه
Pedestrian Detection by Using a Spatio-Temporal Histogram of Oriented Gradients
In this paper, we propose a pedestrian detection algorithm based on both appearance and motion features to achieve high detection accuracy when applied to complex scenes. Here, a pedestrian’s appearance is described by a histogram of oriented spatial gradients, and his/her motion is represented by another histogram of temporal gradients computed from successive frames. Since pedestrians typical...
متن کاملHuman Detection in Static Images
Human detection is the first step for a number of applications such as smart video surveillance, driving assistance systems, and intelligent digital content management. It’s a challenging problem due to the variance of illumination, color, scale, pose, and so forth. This chapter reviews various aspects of human detection in static images and focuses on learning-based methods that build classifi...
متن کاملEnhancing Real-Time Human Detection Based on Histograms of Oriented Gradients
In this paper we propose a human detection framework based on an enhanced version of Histogram of Oriented Gradients (HOG) features. These feature descriptors are computed with the help of a precalculated histogram of square-blocks. This novel method outperforms the integral of oriented histograms allowing the calculation of a single feature four times faster. Using Adaboost for HOG feature sel...
متن کاملBoosting Histograms of Oriented Gradients for Human Detection
In this paper we propose a human detection framework based on an enhanced version of Histogram of Oriented Gradients (HOG) features. These feature descriptors are computed with the help of a precalculated histogram of squareblocks. This novel method outperforms the integral of oriented histograms allowing the calculation of a single feature four times faster. Using Adaboost for HOG feature sele...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012