Models and Algorithms for Tracking Using Variable Dimension Particle Filters

نویسندگان

  • Simon Godsill
  • Jaco Vermaak
چکیده

In this paper we discuss modifications to tracking models, and sequential Monte Carlo algorithms for their estimation from sequential and batch data. New models for tracking are proposed which involve a dynamical model on both the hidden state value and its arrival times. In this way we aim to have a more flexible and parsimonious representation of time-varying state characteristics which is more amenable to estimation using Bayesian filtering. In order to perform inference in this scenario new particle filters and smoothers are proposed for cases where the state process arrives at unknown times that are generally different from the observation arrival times.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bearings-Only Tracking of Manoeuvring Targets Using Multiple Model Variable Rate Particle Filter with Differential Evolution

In standard target tracking, algorithms assume synchronous and identical sampling rate for measurement and state processes. Contrary to these methods particle filter is proposed with variable rate. These filters use a restricted number of states, and a Gamma distribution is applied at state arrival time so that the maneuvering targets could be tracked. Although this structure is capable of trac...

متن کامل

A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection

Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...

متن کامل

Particle filters for positioning, navigation, and tracking

A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position...

متن کامل

Visual Object Target Tracking Using Particle Filter: A Survey

This paper gives the survey of the existing developments of Visual object target tracking using particle filter from the last decade and discusses the advantage and disadvantages of various particle filters. A variety of different approaches and algorithms have been proposed in literature. At present most of the work in Visual Object Target Tracking is focusing on using particle filter. The par...

متن کامل

Particle Filtering with Multiple Cues for Object Tracking in Video Sequences

In this paper we investigate object tracking in video sequences by using the potential of particle filtering to process features from video frames. A particle filter (PF) and a Gaussian sum particle filter (GSPF) are developed based upon multiple information cues, namely colour and texture, which are described with highly nonlinear models. The algorithms rely on likelihood factorisation as a pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004