Localized light-induced protein dimerization in living cells using a photocaged dimerizer.
نویسندگان
چکیده
Regulated protein localization is critical for many cellular processes. Several techniques have been developed for experimental control over protein localization, including chemically induced and light-induced dimerization, which both provide temporal control. Light-induced dimerization offers the distinct advantage of spatial precision within subcellular length scales. A number of elegant systems have been reported that utilize natural light-sensitive proteins to induce dimerization via direct protein-protein binding interactions, but the application of these systems at cellular locations beyond the plasma membrane has been limited. Here we present a new technique to rapidly and reversibly control protein localization in living cells with subcellular spatial resolution using a cell-permeable, photoactivatable chemical inducer of dimerization. We demonstrate light-induced recruitment of a cytosolic protein to individual centromeres, kinetochores, mitochondria and centrosomes in human cells, indicating that our system is widely applicable to many cellular locations.
منابع مشابه
Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP.
We developed a new system for light-induced protein dimerization in living cells using a photocaged analogue of rapamycin together with an engineered rapamycin binding domain. Using focal adhesion kinase as a target, we demonstrated successful light-mediated regulation of protein interaction and localization in living cells. Modification of this approach enabled light-triggered activation of a ...
متن کاملOptogenetic control of organelle transport using a photocaged chemical inducer of dimerization
Cell polarity, growth and signaling require organelle transport by cytoskeletal motor proteins that are precisely regulated in time and space. Probing these complex, dynamic processes requires experimental techniques with comparable temporal and spatial precision. Inducible dimerization offers the ability to recruit motor proteins to organelles in living cells. Approaches include rapamycin-indu...
متن کاملBiosynthetic selenoproteins with genetically-encoded photocaged selenocysteines.
Selenocysteine is a valuable component of both natural selenoproteins and designer biocatalysts; however the availability of such proteins is hampered by technical limitations. Here we report the first general strategy for the production of selenoproteins via genetically-encoded incorporation of a synthetic photocaged selenocysteine residue in yeast cells, and provide examples of light-controll...
متن کاملRapid and orthogonal logic gating with a gibberellin-induced dimerization system.
Using a newly synthesized gibberellin analog containing an acetoxymethyl group (GA(3)-AM) and its binding proteins, we developed an efficient chemically inducible dimerization (CID) system that is completely orthogonal to existing rapamycin-mediated protein dimerization. Combining the two systems should allow applications that have been difficult or impossible with only one CID system. By using...
متن کاملA versatile synthetic dimerizer for the regulation of protein-protein interactions.
The use of low molecular weight organic compounds to induce dimerization or oligomerization of engineered proteins has wide-ranging utility in biological research as well as in gene and cell therapies. Chemically induced dimerization can be used to activate intracellular signal transduction pathways or to control the activity of a bipartite transcription factor. Dimerizer systems based on the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 5 شماره
صفحات -
تاریخ انتشار 2014