Distinct cell functions of osteoblasts on UV-functionalized titanium- and zirconia-based implant materials are modulated by surface topography.

نویسندگان

  • Brigitte Altmann
  • Ralf-Joachim Kohal
  • Thorsten Steinberg
  • Pascal Tomakidi
  • Maria Bächle-Haas
  • Ann Wennerberg
  • Wael Att
چکیده

Though recent studies report decisive positive effects on cells, elicited by ultraviolet (UV)-induced bioactivation of biomaterial implant surfaces, they frequently employ cells other than of human origin or cells not representing oral implant targets. Therefore, the present study aims at exploring distinct cell functions of primary human alveolar bone osteoblasts (PHABO) in response to bioactivated microstructured titanium and zirconia implant surfaces with matched controls. UV-treatment significantly reduced surface carbon, while concomitantly increasing wettability. In case of titanium or zirconia biomaterial source of equal roughness, bioactivation did not significantly improve cell functions, including initial cell attachment, morphogenesis, proliferation, and gene expression of osteogenic biomarkers osteocalcin, alkaline phosphatase and collagen type I. However, cell functions discriminated surface roughness by either comparing titanium and zirconia or interindividual zirconia surfaces. While rough surfaces primarily favored primary adhesion, proliferation appeared improved on smooth surfaces, and gene expression seemed to be stronger modulated on the smoothest biomaterial. Our results show for the first time that bioactivation appears to be not the main causative for the observed modulation of the distinct cell functions analyzed in PHABO, but add to the body of evidence that they were more governed by surface architecture rather than by bioactivation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Behavior of osteoblastic cells cultured on titanium and structured zirconia surfaces

BACKGROUND Osseointegration is crucial for the long-term success of dental implants and depends on the tissue reaction at the tissue-implant interface. Mechanical properties and biocompatibility make zirconia a suitable material for dental implants, although surface processings are still problematic. The aim of the present study was to compare osteoblast behavior on structured zirconia and tita...

متن کامل

Comparison of the Osteogenic Potential of Titanium and Modified Zirconia-Based Bioceramics

Zirconia is now favored over titanium for use in dental implant materials because of its superior aesthetic qualities. However, zirconia is susceptible to degradation at lower temperatures. In order to address this issue, we have developed modified zirconia implants that contain tantalum oxide or niobium oxide. Cells attached as efficiently to the zirconia implants as to titanium-based material...

متن کامل

Implant Supported Fixed Dental Prostheses Using a New Monotype Zirconia Implant—A Case Report

Currently, titanium or specific titanium alloys are the most often used materials for the fabrication of dental implants. Many studies have confirmed the osseointegrative capacity and clinical long-term performance of moderately rough titanium implants. However, disadvantages have also been reported with regard to peri-implant infections and the titanium metal properties. Tooth colored ceramic ...

متن کامل

Surface Modifications of Dental Ceramic Implants with Different Glass Solder Matrices: In Vitro Analyses with Human Primary Osteoblasts and Epithelial Cells

Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically...

متن کامل

Automatic Actin Filament Quantification of Osteoblasts and Their Morphometric Analysis on Microtextured Silicon-Titanium Arrays

Microtexturing of implant surfaces is of major relevance in the endeavor to improve biorelevant implant designs. In order to elucidate the role of biomaterial’s topography on cell physiology, obtaining quantitative correlations between cellular behavior and distinct microarchitectural properties is in great demand. Until now, the microscopically observed reorganization of the cytoskeleton on st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering. Part C, Methods

دوره 19 11  شماره 

صفحات  -

تاریخ انتشار 2013