Kernel Maximum a Posteriori Classification with Error Bound Analysis

نویسندگان

  • Zenglin Xu
  • Kaizhu Huang
  • Jianke Zhu
  • Irwin King
  • Michael R. Lyu
چکیده

Kernel methods have been widely used in data classification. Many kernel-based classifiers like Kernel Support Vector Machines (KSVM) assume that data can be separated by a hyperplane in the feature space. These methods do not consider the data distribution. This paper proposes a novel Kernel Maximum A Posteriori (KMAP) classification method, which implements a Gaussian density distribution assumption in the feature space and can be regarded as a more generalized classification method than other kernel-based classifier such as Kernel Fisher Discriminant Analysis (KFDA). We also adopt robust methods for parameter estimation. In addition, the error bound analysis for KMAP indicates the effectiveness of the Gaussian density assumption in the feature space. Furthermore, KMAP achieves very promising results on eight UCI benchmark data sets against the competitive methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS

Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...

متن کامل

A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems

We derive a posteriori error estimates in the L∞((0, T ];L∞(Ω)) norm for approximations of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then establish a pos...

متن کامل

ar X iv : 0 71 1 . 39 28 v 1 [ m at h . N A ] 2 5 N ov 2 00 7 A POSTERIORI ERROR ESTIMATES IN THE MAXIMUM NORM FOR PARABOLIC PROBLEMS ∗

Abstract. We derive a posteriori error estimates in the L∞((0, T ];L∞(Ω)) norm for approximations of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then estab...

متن کامل

Statistical Methods for Unexploded Ordnance Discrimination

We propose statistical processing methods and performance analysis techniques for discrimination and localization of Unexploded Ordnance (UXOs) using EMI sensors based on nonparametrically defined prior probability density functions for target-relevant features. In the first part of this thesis, new sets of UXO discrimination methods using these nonparametric prior models are introduced where w...

متن کامل

Performance Analysis for Data Compression Based Signal Classification Methods

In this paper, we present an information theoretic analysis of the blind signal classification algorithm. We show that the algorithm is equivalent to a Maximum A Posteriori (MAP) estimator based on estimated parametric probability models. We prove a lower bound on the error exponents of the parametric model estimation. It is shown that the estimated model parameters converge in probability to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007