Quantum Differential Forms

نویسنده

  • Boris A. KUPERSHMIDT
چکیده

§

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Differential Structures on Quantum Principal Bundles

A constructive approach to differential calculus on quantum principal bundles is presented. The calculus on the bundle is built in an intrinsic manner, starting from given graded (differential) *-algebras representing horizontal forms on the bundle and differential forms on the base manifold, together with a family of antiderivations acting on horizontal forms, playing the role of covariant der...

متن کامل

Non–Commutative Geometry on Quantum Phase–Space

A non–commutative analogue of the classical differential forms is constructed on the phase–space of an arbitrary quantum system. The non– commutative forms are universal and are related to the quantum mechanical dynamics in the same way as the classical forms are related to classical dynamics. They are constructed by applying the Weyl–Wigner symbol map to the differential envelope of the linear...

متن کامل

Hodge and Laplace-Beltrami Operators for Bicovariant Differential Calculi on Quantum Groups

For bicovariant differential calculi on quantum matrix groups a generalisation of classical notions such as metric tensor, Hodge operator, codifferential and Laplace-Beltrami operator for arbitrary k-forms is given. Under some technical assumptions it is proved that Woronowicz’ external algebra of left-invariant differential forms either contains a unique form of maximal degree or it is infinit...

متن کامل

Ginsburg-Pitaevski-Gross differential equation with the Rosen-Morse and modified Woods-Saxon potentials

In this paper, we consider non-linear Ginsburg-Pitaevski-Gross equation with the Rosen-Morse and modifiedWoods-Saxon potentials which is corresponding to the quantum vortices and has important applications in turbulence theory. We use the Runge- Kutta-Fehlberg approximation method to solve the resulting non-linear equation.    

متن کامل

ar X iv : 0 90 1 . 17 41 v 1 [ m at h . G M ] 1 3 Ja n 20 09 Skew - symmetric differential forms . Invariants . Realization of invariant structures

Skew-symmetric differential forms play an unique role in mathematics and mathematical physics. This relates to the fact that closed exterior skew-symmetric differential forms are invariants. The concept of “Exterior differential forms” was introduced by E.Cartan for a notation of integrand expressions, which can create the integral invariants. (The existence of integral invariants was recognize...

متن کامل

ec 2 00 5 Analysis of the equations of mathematical physics and foundations of field theories with the help of skew - symmetric differential forms

Analysis of the equations of mathematical physics and foundations of field theories with the help of skew-symmetric differential forms Abstract In the paper it is shown that, even without a knowledge of the concrete form of the equations of mathematical physics and field theories, with the help of skew-symmetric differential forms one can see specific features of the equations of mathematical p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998