Sufficient dimension reduction for censored predictors.
نویسندگان
چکیده
Motivated by a study conducted to evaluate the associations of 51 inflammatory markers and lung cancer risk, we propose several approaches of varying computational complexity for analyzing multiple correlated markers that are also censored due to lower and/or upper limits of detection, using likelihood-based sufficient dimension reduction (SDR) methods. We extend the theory and the likelihood-based SDR framework in two ways: (i) we accommodate censored predictors directly in the likelihood, and (ii) we incorporate variable selection. We find linear combinations that contain all the information that the correlated markers have on an outcome variable (i.e., are sufficient for modeling and prediction of the outcome) while accounting for censoring of the markers. These methods yield efficient estimators and can be applied to any type of outcome, including continuous and categorical. We illustrate and compare all methods using data from the motivating study and in simulations. We find that explicitly accounting for the censoring in the likelihood of the SDR methods can lead to appreciable gains in efficiency and prediction accuracy, and also outperformed multiple imputations combined with standard SDR.
منابع مشابه
Analysis of Censored Survival Data with Dimension Reduction Methods: Tehran Lipid and Glucose Study
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. To specify an appropriate model to determine the risk of CVD and predict survival rate, users are required to specify a functional form which relates the outcome variables to the input ones. In this paper, we proposed a dimension reduction method using a general model, which includes many widely used survival m...
متن کاملSufficient dimension reduction via bayesian mixture modeling.
Dimension reduction is central to an analysis of data with many predictors. Sufficient dimension reduction aims to identify the smallest possible number of linear combinations of the predictors, called the sufficient predictors, that retain all of the information in the predictors about the response distribution. In this article, we propose a Bayesian solution for sufficient dimension reduction...
متن کاملPartial least squares dimension reduction for microarray gene expression data with a censored response.
An important application of DNA microarray technologies involves monitoring the global state of transcriptional program in tumor cells. One goal in cancer microarray studies is to compare the clinical outcome, such as relapse-free or overall survival, for subgroups of patients defined by global gene expression patterns. A method of comparing patient survival, as a function of gene expression, w...
متن کاملEstimating Sufficient Reductions of the Predictors in Abundant High-dimensional Regressions by R. Dennis Cook1, Liliana Forzani
We study the asymptotic behavior of a class of methods for sufficient dimension reduction in high-dimension regressions, as the sample size and number of predictors grow in various alignments. It is demonstrated that these methods are consistent in a variety of settings, particularly in abundant regressions where most predictors contribute some information on the response, and oracle rates are ...
متن کاملTesting Predictor Contributions in Sufficient Dimension Reduction
We develop tests of the hypothesis of no effect for selected predictors in regression, without assuming a model for the conditional distribution of the response given the predictors. Predictor effects need not be limited to the mean function and smoothing is not required. The general approach is based on sufficient dimension reduction, the idea being to replace the predictor vector with a lower...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 73 1 شماره
صفحات -
تاریخ انتشار 2017