Symplectic Geometry of Supersymmetry and Nonlinear Sigma Model
نویسنده
چکیده
Recently it has been argued, that Poincaré supersymmetric field theories admit an underlying loop space hamiltonian (symplectic) structure. Here shall establish this at the level of a general N = 1 supermultiplet. In particular, we advocate the use of a superloop space introduced in [2], and the necessity of using nonconventional auxiliary fields. As an example we consider the nonlinear σ-model. Due to the quartic fermionic term, we conclude that the use of superloop space variables is necessary for the action to have a hamiltonian loop space interpretation.
منابع مشابه
Generalized complex geometry and supersymmetric non - linear sigma models
After an elementary presentation of the relation between supersymmetric nonlinear sigma models and geometry, I focus on 2D and the target space geometry allowed when there is an extra supersymmetry. This leads to a brief introduction to generalized complex geometry, a notion introduced recently by Hitchin which interpolates between complex and symplectic manifolds. Finally I present worldsheet ...
متن کاملGeneralized Complex Geometry and Supersymmetric Non-linear Sigma Models Talk at Simons Workshop 2004
After an elementary presentation of the relation between supersymmetric nonlinear sigma models and geometry, I focus on 2D and the target space geometry allowed when there is an extra supersymmetry. This leads to a brief introduction to generalized complex geometry, a notion introduced recently by Hitchin which interpolates between complex and symplectic manifolds. Finally I present worldsheet ...
متن کاملNonlinear Sigma Models and Symplectic Geometry on Loop Spaces of (Pseudo)Riemannian Manifolds
In this paper we consider symplectic and Hamiltonian structures of systems generated by actions of sigma-model type and show that these systems are naturally connected with specific symplectic geometry on loop spaces of Riemannian and pseudoRiemannian manifolds. † On leave of absence from VNIIFTRI, Mendeleevo, Moscow Region 141570, Russia 1
متن کاملEquivariant Kähler Geometry and Localization in the G/G Model
We analyze in detail the equivariant supersymmetry of the G/G model. In spite of the fact that this supersymmetry does not model the infinitesimal action of the group of gauge transformations, localization can be established by standard arguments. The theory localizes onto reducible connections and a careful evaluation of the fixed point contributions leads to an alternative derivation of the V...
متن کاملTwo Aspects of K Ahler Geometry in the G=g Model
The subject of this talk is the role of equivariant KK ahler geometry in the G=G model or, in other words, that of its equivariant supersymmetry. This supersym-metry is somewhat unusual in that it does not model the innnitesimal action of the group of gauge transformations. Nevertheless, this supersymmetry is useful on, at least, two counts. Firstly, it allows one to localise the path integral....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994