Approximate Bayesian inference for random effects meta-analysis.
نویسندگان
چکیده
Whilst meta-analysis is becoming a more commonplace statistical technique, Bayesian inference in meta-analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model for meta-analysis. These computationally inexpensive methods are based on simple analytical formulae that provide an efficient tool for a qualitative analysis and a quick numerical estimation of posterior quantities. They are shown to lead to sensible approximations in two examples of meta-analyses and to be in broad agreement with the more computationally intensive Gibbs sampling.
منابع مشابه
A re-evaluation of random-effects meta-analysis
Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we c...
متن کاملNetwork meta-analysis with integrated nested Laplace approximations.
Analyzing the collected evidence of a systematic review in form of a network meta-analysis (NMA) enjoys increasing popularity and provides a valuable instrument for decision making. Bayesian inference of NMA models is often propagated, especially if correlated random effects for multiarm trials are included. The standard choice for Bayesian inference is Markov chain Monte Carlo (MCMC) sampling,...
متن کاملMeta-analysis of studies with missing data.
SUMMARY Consider a meta-analysis of studies with varying proportions of patient-level missing data, and assume that each primary study has made certain missing data adjustments so that the reported estimates of treatment effect size and variance are valid. These estimates of treatment effects can be combined across studies by standard meta-analytic methods, employing a random-effects model to a...
متن کاملMeta‐analysis of two studies in the presence of heterogeneity with applications in rare diseases
Random-effects meta-analyses are used to combine evidence of treatment effects from multiple studies. Since treatment effects may vary across trials due to differences in study characteristics, heterogeneity in treatment effects between studies must be accounted for to achieve valid inference. The standard model for random-effects meta-analysis assumes approximately normal effect estimates and ...
متن کاملBayesian Analysis of Survival Data with Spatial Correlation
Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study. One of the most important issues in the analysis of survival data with spatial dependence, is estimation of the parameters and prediction of the unknown values in known sites based on observations vector. In this paper to analyze this type of survival, Cox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 17 2 شماره
صفحات -
تاریخ انتشار 1998