Parameterized Neural Network Language Models for Information Retrieval
نویسندگان
چکیده
Information Retrieval (IR) models need to deal with two difficult issues, vocabulary mismatch and term dependencies. Vocabulary mismatch corresponds to the difficulty of retrieving relevant documents that do not contain exact query terms but semantically related terms. Term dependencies refers to the need of considering the relationship between the words of the query when estimating the relevance of a document. A multitude of solutions has been proposed to solve each of these two problems, but no principled model solve both. In parallel, in the last few years, language models based on neural networks have been used to cope with complex natural language processing tasks like emotion and paraphrase detection. Although they present good abilities to cope with both term dependencies and vocabulary mismatch problems, thanks to the distributed representation of words they are based upon, such models could not be used readily in IR, where the estimation of one language model per document (or query) is required. This is both computationally unfeasible and prone to over-fitting. Based on a recent work that proposed to learn a generic language model that can be modified through a set of document-specific parameters, we explore use of new neural network models that are adapted to ad-hoc IR tasks. Within the language model IR framework, we propose and study the use of a generic language model as well as a document-specific language model. Both can be used as a smoothing component, but the latter is more adapted to the document at hand and has the potential of being used as a full document language model. We experiment with such models and analyze their results on TREC-1 to 8 datasets.
منابع مشابه
A Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملEnhancing Translation Language Models with Word Embedding for Information Retrieval
In this paper, we explore the usage of Word Embedding semantic resources for Information Retrieval (IR) task. This embedding, produced by a shallow neural network, have been shown to catch semantic similarities between words (Mikolov et al., 2013). Hence, our goal is to enhance IR Language Models by addressing the term mismatch problem. To do so, we applied the model presented in the paper Inte...
متن کاملImproved Skips for Faster Postings List Intersection
Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...
متن کاملImproved Skips for Faster Postings List Intersection
Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...
متن کاملAdv . Topics in NLP : Language Grounding for Robotics Mohit Bansal
We present a novel response generation system that can be trained end to end on large quantities of unstructured Twitter conversations. A neural network architecture is used to address sparsity issues that arise when integrating contextual information into classic statistical models, allowing the system to take into account previous dialog utterances. Our dynamic-context generative models show ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1510.01562 شماره
صفحات -
تاریخ انتشار 2015