Bayesian forecasting with highly correlated predictors

نویسنده

  • Dimitris Korobilis
چکیده

This paper considers Bayesian variable selection in regressions with a large number of possibly highly correlated macroeconomic predictors. I show that by acknowledging the correlation structure in the predictors can improve forecasts over existing popular Bayesian variable selection algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting using a large panel of predictors: Bayesian model averaging and principal components regression

We study the out-of-sample forecast performance of two alternative methods for dealing with dimensionality: Bayesian model Averaging (BMA) and principal components regression (PCR). We conduct a different out-of-sample investigation in which the predictors are chosen jointly for both output and inflation using Bayesian variable selection in each out-of-sample recursion using information availab...

متن کامل

Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil

In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...

متن کامل

Forecasting in VAR models with large datasets

This paper deals with model selection and forecasting in vector autoregressions (VARs) in situations where the set of available predictors is inconveniently large to accommodate with methods and diagnostics used in traditional small-scale models. Available information over this large dataset can be summarized into a considerably smaller set of variables through factors estimated by the dynamic ...

متن کامل

UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?

Block factor methods o¤er an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors re‡ecting di¤erent blocks of variables (e.g. a price block, a housing block, a …nancial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodo...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012