Stability of Epidemic Models over Directed Graphs: A Positive Systems Approach
نویسندگان
چکیده
We study the stability properties of a susceptible-infected-susceptible (SIS) diffusion model, so-called the n-intertwined Markov model, over arbitrary directed network topologies. As in the majority of the work on infection spread dynamics, this model exhibits a threshold phenomenon. When the curing rates in the network are high, the all-healthy state is the unique equilibrium over the network. Otherwise, an endemic equilibrium state emerges, where some infection remains within the network. Using notions from positive systems theory, we provide conditions for the global asymptotic stability of the equilibrium points in both cases over strongly connected networks based on the value of the basic reproduction number, a fundamental quantity in the study of epidemics. When the network topology is weakly connected, we provide conditions for the existence, uniqueness, and global asymptotic stability of an endemic state, and we study the stability of the all-healthy state. Finally, we demonstrate that the n-intertwined Markov model can be viewed as a best-response dynamical system of a concave game among the nodes. This characterization allows us to cast new infection spread dynamics; additionally, we provide a sufficient condition for the global convergence to the all-healthy state, which can be checked in a distributed fashion. Several simulations demonstrate our results.
منابع مشابه
ON THE STABILITY AND THRESHOLD ANALYSIS OF AN EPIDEMIC MODEL
We consider a mathematical model of epidemic spread in which the population is partitioned into five compartments of susceptible S(t), Infected I(t), Removed R(t), Prevented U(t) and the Controlled W(t). We assume each of the compartments comprises of cohorts of individuals which are identical with respect to the disease status. We derive five systems of equations to represent each of the ...
متن کاملAnalysis and Control of a Continuous-Time Bi-Virus Model
This paper studies a distributed continuous-time bi-virus model in which two competing viruses spread over a network consisting of multiple groups of individuals. Limiting behaviors of the network are characterized by analyzing the equilibria of the system and their stability. Specifically, when the two viruses spread over possibly different directed infection graphs, the system may have (1) a ...
متن کاملA review on West African Ebola epidemic dynamics models
Background and aims: The world is threatened by disease outbreak that reaches a public health emergency of international concern, studies to inform public and agencies for effective containment strategy are necessary. Several studies provided vital information of the dynamics and control of Ebola epidemic outbreak in West Africa. Methodologies and techniques in those researches...
متن کاملCooperative Control of Mobile Robots in Creating a Runway Platform for Quadrotor Landing
Multi-agent systems are systems in which several agents accomplish a mission in a cooperative manner. In this paper, a novel idea for the construction of a movable runway platform based on multi-agent systems is presented. It is assumed that an aerial agent (quadrotor) decides to make an emergency landing due to reasons such as a decrease in energy level or technical failure, while there is no ...
متن کاملAIDS Epidemic Modeling With Different Demographic Structures
The most urgent public health problem today is to devise effective strategies to minimize the destruction caused by the AIDS epidemic. Mathematical models based on the underlying transmission mechanisms of the AIDS virus can help the medical/scientific community understand and anticipate its spread in different populations and evaluate the potential effectiveness of different approaches for bri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 74 شماره
صفحات -
تاریخ انتشار 2016