A conserved glutamate controls the commitment to acyl-adenylate formation in asparagine synthetase.

نویسندگان

  • Megan E Meyer
  • Jemy A Gutierrez
  • Frank M Raushel
  • Nigel G J Richards
چکیده

Inhibitor docking studies have implicated a conserved glutamate residue (Glu-348) as a general base in the synthetase active site of the enzyme asparagine synthetase B from Escherichia coli (AS-B). We now report steady-state kinetic, isotope transfer, and positional isotope exchange experiments for a series of site-directed AS-B mutants in which Glu-348 is substituted by conservative amino acid replacements. We find that formation of the β-aspartyl-AMP intermediate, and therefore the eventual production of asparagine, is dependent on the presence of a carboxylate side chain at this position in the synthetase active site. In addition, Glu-348 may also play a role in mediating the conformational changes needed to (i) coordinate, albeit weakly, the glutaminase and synthetase activities of the enzyme and (ii) establish the structural integrity of the intramolecular tunnel along which ammonia is translocated. The importance of Glu-348 in mediating acyl-adenylate formation contrasts with the functional role of the cognate residues in β-lactam synthetase (BLS) and carbapenem synthetase (CPS) (Tyr-348 and Tyr-345, respectively), which both likely evolved from asparagine synthetase. Given the similarity of the chemistry catalyzed by AS-B, BLS, and CPS, our work highlights the difficulty of predicting the functional outcome of single site mutations on enzymes that catalyze almost identical chemical transformations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fidelity of seryl-tRNA synthetase to binding of natural amino acids from HierDock first principles computations.

Seryl-tRNA synthetase (SerRS) charges serine to tRNA(Ser) following the formation of a seryl adenylate intermediate, but the extent to which other non-cognate amino acids compete with serine to bind to SerRS or for the formation of the activated seryl adenylate intermediate is not known. To examine the mechanism of discrimination against non-cognate amino acids, we calculated the relative bindi...

متن کامل

The archaeal transamidosome for RNA-dependent glutamine biosynthesis

Archaea make glutaminyl-tRNA (Gln-tRNA(Gln)) in a two-step process; a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) forms Glu-tRNA(Gln), while the heterodimeric amidotransferase GatDE converts this mischarged tRNA to Gln-tRNA(Gln). Many prokaryotes synthesize asparaginyl-tRNA (Asn-tRNA(Asn)) in a similar manner using a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) and the hete...

متن کامل

The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: the mechanism of discrimination between asparagine and aspartic acid.

The crystal structure of Thermus thermophilus asparaginyl-tRNA synthetase has been solved by multiple isomorphous replacement and refined at 2.6 A resolution. This is the last of the three class IIb aminoacyl-tRNA synthetase structures to be determined. As expected from primary sequence comparisons, there are remarkable similarities between the tertiary structures of asparaginyl-tRNA synthetase...

متن کامل

Molecular cloning of adenylate kinase from the human filarial parasite Onchocerca volvulus

Adenylate kinases (ADK) are ubiquitous enzymes that contribute to the homeostasis of adeninenucleotides in living cells. In this study, the cloning of a cDNA encoding an adenylate kinase from the filariaOnchocerca volvulus has been described. Using PCR technique, a 281 bp cDNA fragment encoding part ofan adenylate kinase was isolated from an O. volvulus cDNA library. Use of this fragment as a p...

متن کامل

Relaxed tRNA specificity of the Staphylococcus aureus aspartyl-tRNA synthetase enables RNA-dependent asparagine biosynthesis.

The human pathogen Staphylococcus aureus is an asparagine prototroph despite its genome not encoding an asparagine synthetase. S. aureus does use an asparaginyl-tRNA synthetase (AsnRS) to directly ligate asparagine to tRNA(Asn). The S. aureus genome also codes for one aspartyl-tRNA synthetase (AspRS). Here we demonstrate the lone S. aureus aspartyl-tRNA synthetase has relaxed tRNA specificity a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 49 43  شماره 

صفحات  -

تاریخ انتشار 2010